删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

物理系周树云及合作者发表量子材料光诱导新奇物理效应综述文章

本站小编 Free考研考试/2022-01-01


清华新闻网11月12日电 在二维材料和拓扑材料等量子材料的研究中,光和物质的相互作用起着重要的作用。它不仅是研究材料处于平衡态时的物理特性的重要探测手段,更为重要的是,脉冲激光激发还可以作为一种物态调控新手段。利用光激发可诱导或“衍生”出平衡态所不具有的新奇物态,进而在超快(皮秒甚至飞秒)时间尺度上实现量子材料的物性调控。近期,清华大学物理系周树云教授及合作者受邀撰写量子材料中光诱导的新奇物理效应的综述文章,评述该领域的最新研究进展及实验的挑战,并展望该研究领域的重要发展机遇。

图1:光和量子材料相互作用导致的新奇物理效应。(a)利用光作为周期性电场的特性,可利用弗洛凯电子态对其电子结构进行调控(弗洛凯工程)并诱导出瞬时拓扑物态。(b)光对材料能量景貌的扰动导致瞬态相变,例如,光致超导和电荷密度波等。(c)利用光的偏振特性来操控量子材料中的自旋、赝自旋和能谷等量子自由度,例如,利用圆偏振光进行不通过能谷的选择性激发。(d)光和材料的拓扑几何相位(贝里曲率)的相互作用导致独特的非线性光学响应。
近十年来,二维材料和拓扑材料的研究不仅得到了快速的发展,而且对其物理特性的研究及物态的调控逐渐从平衡态(稳态)拓展到非平衡态(瞬态)。这个领域的快速发展一方面得益于高质量二维材料及异质结的制备、拓扑新材料的发现及对光与物质相互作用物理机制的理解,另一方面也与基于泵浦-探测手段的多种超快时间分辨实验技术的发展密不可分。尤其是超快时间分辨角分辨光电子能谱(TrARPES)、超快时间分辨X射线衍射(TrXRD)、超快电子衍射(UED)、超快光学和超快时间分辨输运等前沿实验技术的发展使得瞬态电子结构、晶格结构和物性的探测成为可能,从而为在超快时间尺度上捕捉非平衡态动力学及实现瞬时物态调控提供了前所未有的机会。
光和物质的相互作用可在二维材料和拓扑材料中诱导出诸多新奇物理效应(见图1)。利用光具有的周期性电场的特点,通过光与物质的相互作用,人们可以瞬态调控其电子结构(简称弗洛凯工程,Floquet engineering),进而改变其拓扑特性;或者在原本非拓扑的材料中诱导出瞬态拓扑态(图1a)。通过光与量子材料中多种准粒子自由度的耦合,进而改变其能量景貌,可以诱导出瞬态相变,例如光诱导的超导和电荷密度波等新奇物态(图1b)。光和物质的相互作用还可以用来探测和操控材料中的赝自旋和谷等各种量子自由度(图1c),为未来电子器件的发展提供新的思路。此外,光和物质的相互作用也成为了探测材料拓扑性质的强有力方法,其与材料拓扑相位的耦合可产生新奇的光学线性和非线性响应(图1d)。
近年来,量子材料的光致新奇物理效应的研究得到快速的发展,但是与大量的理论预言相比,当前量子材料的非平衡态物理和瞬态调控的实验研究仍处于关键发展阶段。一方面,实验研究仍然面临巨大的挑战,但是同时这个领域也蕴含着取得重大实验突破的机遇。把量子材料的研究拓展到非平衡态不仅具有重要的科学意义,同时也拥有广阔的应用前景。在皮秒甚至飞秒的时间尺度上实现量子材料的物态调控,对于未来新一代高速、新机制器件的研发意义重大。
该工作以“二维材料和拓扑材料光诱导衍生现象”(Light- induced emergent phenomena in2D materials and topological materials)为题于11月9日在线发表在《自然评论:物理》(Nature Reviews Physics)。清华大学物理系博士研究生鲍昌华为文章第一作者,清华大学物理系周树云教授、北京大学量子科学材料中心孙栋教授和北京航空航天大学材料科学与工程学院汤沛哲教授为文章的共同通讯作者。该工作得到国家自然科学基金、国家重点研发计划、北京未来芯片技术高精尖创新中心和北京自然科学基金的支持。
论文链接:https://www.nature.com/articles/s42254-021-00388-1

来源:清华大学新闻网



相关话题/材料 物理 物质 电子 实验

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 浙大物理学系 | 基于腔磁振子系统中多稳态的长时记忆效应和三值逻辑门
    近年,基于腔光子和磁振子相干或耗散耦合的腔磁振子系统引起人们的关注。磁振子可以用于微波和光频光子之间的相干转换,同时磁振子和超导量子比特之间的相干耦合和纠缠也已实现。耦合了自旋波量子、微波光子、光频光子、声子和超导量子比特的混合量子系统逐渐成型,成为未来构筑量子互联网络的一个重要平台。近日浙江大学物 ...
    本站小编 Free考研考试 2022-01-01
  • 北大物理学院吕劲课题组在《物理报道》发表亚10 nm二维晶体管研究综述长文
    基于场效应晶体管(FET)的大规模集成电路是信息时代的基石。在过去的半个多世纪,遵循摩尔定律,FET的尺寸不断缩小,芯片上FET数量得以不断增加,芯片功能日趋多元化。如今,市场上的硅基晶体管尺寸已经降至18 nm栅长。由于受到短沟道效应的影响,继续缩短栅长,器件性能会大幅度下降,这引发了半导体业界对 ...
    本站小编 Free考研考试 2022-01-01
  • 柔性钙钛矿太阳能电池:材料与器件
    钙钛矿太阳能电池因其成本低廉和光电转化效率高而受到学术界和产业界的极大关注,而柔性钙钛矿太阳能电池具有效率高、重量轻、可卷对卷制备等特点,被认为是实现钙钛矿光伏产业化的一个重要突破口。因其柔性衬底的特殊性,在构筑柔性器件时,对于透明电极、电荷传输层、钙钛矿等要进行材料选择和制备优化,以获得高转化效率 ...
    本站小编 Free考研考试 2022-01-01
  • 首次实现氮化物半导体二维电子气中自旋的电学注入
    随着信息技术逐步迈向后摩尔时代,基于半导体中的电子自旋自由度发展新一代高速低功耗信息处理器件的自旋电子学受到高度关注。以氮化物半导体为代表的宽禁带半导体具有较长的自旋弛豫时间和电场可调控的自旋轨道耦合效应,在发展室温自旋电子器件方面具有一定的优势。目前基于氮化物半导体二维电子气(2DEG)的射频和功 ...
    本站小编 Free考研考试 2022-01-01
  • Rashba物理的新“味”:自旋轨道耦合可逆调控的直接带隙半导体黑砷
    电子是我们日常生活最熟悉的“陌生人”:每个电子携带一份内禀的电荷,其集体运动产生的电流驱动了照明、晶体管以及各种电子设备的运行。然而作为一种基本粒子,电子还携带另外一个基本物理量,即自旋。如何操控自旋,研制速度更快、能耗更低的电子器件是自上世纪90年代以来科学和工程领域孜孜追求的目标。浙江大学和中南 ...
    本站小编 Free考研考试 2022-01-01
  • 西安交大科研人员在超冷原子物理领域取得系列新进展
    经过近三十年的蓬勃发展,超冷原子物理已经成为人们开展量子物理研究的重要平台。利用该平台,人们深入研究了玻色—爱因斯坦凝聚(BEC)、BCS型费米超流、BCS-BEC渡越、拓扑相和拓扑相变等丰富的物理现象,极大地深化了人们对超导、超流、量子磁性、拓扑相变等物理现象的认识。近日,西安交通大学物理学院副教 ...
    本站小编 Free考研考试 2022-01-01
  • 武汉大学物理科学与技术学院范德华异质双层中激子的辨认取得重要进展
    近期,武汉大学物理科学与技术学院张顺平教授、徐红星院士与袁声军教授、张晨栋教授合作,在过渡金属硫族化物的原子层异质结的光物理领域中取得重要进展,揭示了异质双层中堆叠角度依赖的激子的波函数分布在单一原子层内,跃迁偶极矩也基本平行于原子面,相关工作于7月30日以“Identification of tw ...
    本站小编 Free考研考试 2022-01-01
  • 北大物理学院马仁敏课题组实现基于模式耦合光场局域化机制的魔角激光器
    微纳激光器通过有效光学反馈机制将光场局域在波长量级或更小尺度,从而增强光与物质相互作用,提升激光器性能,可实现低能耗和高调制速率相干激射,在数据通信、光传感、片上光电互联等领域有着广泛应用前景。光场的局域化通常由材料光学性质的空间不连续性或无序化引起,比如不同折射率材料界面的全内反射可形成回音壁局域 ...
    本站小编 Free考研考试 2022-01-01
  • 超宽禁带氮化物半导体材料高效p型掺杂
    超宽禁带氮化物由于其可调谐直接带隙、高击穿场强、优异的化学和热稳定性,在高效深紫外照明和探测、高频和大功率电子器件等领域具备极大的应用潜力。通过掺杂来调节半导体材料的导电特性,实现n型或p型导电,对于光电子或微电子器件的应用至关重要。然而,目前超宽禁带氮化物的p型掺杂效率普遍低下,成为其实现高性能器 ...
    本站小编 Free考研考试 2022-01-01
  • 纳米自组装半导体超晶格电子-声子强相互作用与自陷态辐射
    国家纳米科学中心刘新风课题组与唐智勇课题组在自陷态复辐射机制的研究中取得重要进展。研究成果以“胶体硒化镉纳米片中纵声学声子折叠模式诱导的自陷态辐射(Zone-Folded Longitudinal Acoustic Phonons Driving Self-Trapped State Emissio ...
    本站小编 Free考研考试 2022-01-01