删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

二维电子气的高效自旋-电荷转换效应

本站小编 Free考研/2020-05-25


自旋流的产生、调控以及自旋流-电流的转换是自旋电子学研究的核心问题。在上世纪90年代,V. M. Edelstein 预言与二维体系电流传输方向相垂直的方向上会产生纯自旋流,即,Edelstein效应。与此相反,当自旋流被注入二维电子体系时,二维界面的Rashba效应可使电子发生与自旋取向有关的定向偏转,产生相应的电信号,这就是所谓的逆Edelstein效应。近年来人们在Rashba界面、二维材料以及拓扑材料表面态中均观察到由于Edelstein效应和逆Edelstein效应产生的高效的自旋流和电荷流相互转换。
氧化物二维电子气体系(LaAlO3/SrTiO3)是一个理想的Rashba界面,是实现自旋流和电荷流相互转化的理想载体。中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室孙继荣团队与北京大学韩伟教授合作,利用铁磁共振实现自旋泵浦的办法,在LaAlO3/SrTiO3界面观察到了自旋与电荷流之间的相互转化,其自旋信号可以持续到室温,并且可以利用门电压进行调控(Sci. Adv. 3, e1602312 (2017))。利用上述办法虽然观察到了自旋流与电荷流之间的相互转化,但这其中存在着两个问题一直困扰着研究人员,一是自旋泵浦效应存在着寄生信号,影响对真实信号的判断;二是自旋流在传输的过程中要穿过绝缘的LaAlO3层,极大地降低了自旋注入效率。
经过长时间探索,最近该团队成功得到了EuO/KTaO3磁性二维电子气 (Phys. Rev. Lett. 121, 116803 (2018))。这是首例由磁性绝缘体/高介电绝缘体构成的新型二维电子气。EuO是铁磁绝缘体,与KTaO3界面形成导电界面。由于EuO对于KTaO3界面的磁邻近诱导效应,EuO/KTaO3 二维电子气显示了明显的铁磁特征。同时,由于磁性EuO与二维电子气直接接触,借助这一设计可以克服非磁性绝缘层的阻碍作用,实现从EuO到二维电子气的直接自旋流注入,并通过二维电子气的逆Edelstein效应实现自旋流–电荷流的转换。
最近,在孙继荣研究员指导下,博士研究生张洪瑞等人利用热自旋注入的办法,通过二维电子气的转换作用,成功实现了自旋流-电荷流的高效转化。具体实验过程是,首先在EuO中建立温度梯度,利用温度梯度驱动非平衡磁振子扩散,进而形成自旋流。由于EuO和二维电子气的密切接触,磁振子自旋流直接注入到KTaO3界面层的二维电子气中。由于界面的Rashba 效应,自旋注入引起电子动量不对称分布,从而产生电流输出。由于没有非磁性绝缘阻挡层,以及界面二维电子气的强Edelstein效应,自旋-电荷转换是高效的。简单的比较表明,在同样磁性层厚度下,低温下EuO/KTaO3二维电子气的自旋塞贝克系数是YIG/Pt异质结的19倍,而YIG/Pt是公认的最优自旋塞贝克体系。通过系统研究,他们还进一步确定了非平衡磁振子在EuO中的扩散长度为16 nm。
以往利用自旋泵浦对氧化物界面进行自旋注入,是通过在磁性层与二维电子气之间交换电子实现的,且中间间隔非磁性绝缘层。本研究中自旋流由EuO中非平衡磁振子的扩散形成,且直接注入到EuO/KTaO3界面,通过磁振子与界面电子的交换作用及自旋-电子动量锁定效应实现转换,因而是一种新的注入与转换方式。这一工作揭示了磁性二维电子气的新特性及氧化物自旋电子学研究的巨大潜力。
本工作中的样品制备与北京大学韩伟教授合作完成。
这一工作发表在Nano Letters上 (Nano Letters 19, 1605 (2019))。该工作得到了科技部、国家自然科学基金委项目和中国科学院重点项目的支持。
文章链接:https://pubs.acs.org.ccindex.cn/doi/pdf/10.1021/acs.nanolett.8b04509

图1. EuO/KTaO3界面的热自旋注入和逆Edelstein效应示意图。(a) 自旋塞贝克逆Edelstein效应的实验装置图。(b) Rashba型二维电子系统的能带结构。(c) 处于平衡状态和非平衡状态的费米面。

图2. EuO/KTaO3界面的自旋塞贝克逆Edelstein效应,其中EuO厚度是15 nm。(a) 左列是不同温度下热电电流随磁场的变化;水平列是不同加热功率下热电电流随磁场的变化。(b) 热电电流随样品温度的变化,加热功率是65 mW。(c) 热电电流随加热功率的变化,样品温度是10 K。

图3. 不同EuO厚度样品的自旋塞贝克逆Edelstein效应 (a) 不同EuO厚度样品热电电流随磁场的变化,测试温度是10K,施加的温度梯度是18.8 K/cm。(b) 热电电流随EuO厚度的变化。

图4. 自旋塞贝克系数随着EuO/KTaO3和YIG/Pt 异质结中磁性层厚度的变化,温度固定在10K,Pt的厚度在5~10 nm。
附件列表:
下载附件>> Nano Lett. 19, 1605 (2019).pdf
(来源:中国科学院物理研究所

相关话题/电子 工作

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 中国建筑科学研究院2020年硕士生复试工作办法及调剂通知
    为贯彻落实党中央、国务院、教育部以及北京市关于做好新冠肺炎疫情防控工作的各项要求,切实加强研究生招考复试中新冠肺炎疫情防控工作,着力保障广大师生生命安全和身体健康。根据《教育部关于印发2020年全国硕士研究生招生工作管理规定的通知》(教学函〔2019〕6号)、《教育部办公厅关于做好2020年全国硕士研究生复试工 ...
    本站小编 Free考研考试 2020-05-25
  • 征稿:《半导体学报》“半导体光电子集成技术”专刊
    新一代信息技术正处于高速发展期,在宽带网络、大数据与人工智能等新型业务及应用的驱动下,数据流量以每年提升60%的速度爆发式增长,而光电子器件的带宽容量每年仅增长10%左右。因此,数据流量的大幅增长对光电子器件在带宽、容量、成本及功耗等方面均提出了严峻挑战,全谱段、高速率、大容量和智能化的光通信网络迫 ...
    本站小编 Free考研 2020-05-25
  • 2019年度中国科学院大型仪器区域中心“物质科学与先进制造领域"片区工作交流会议圆满召开
    为进一步加强物质科学与先进制造领域片区内的大型区域中心之间的工作交流、学习和协作,由中国科学院条件保障与财务局主办、中国科学院北京信息电子技术大型仪器区域中心、中国科学院半导体研究所承办的2019年度中国科学院大型仪器区域中心“物质科学与先进制造领域”片区工作交流会于9月19-21日在浙江省海宁市圆 ...
    本站小编 Free考研 2020-05-25
  • 战略性先进电子材料重点专项“第三代半导体固态紫外光源材料及器件关键技术”项目2017年度汇报会召开
    2017年12月18日,国家重点研发计划“战略性先进电子材料”专项“第三代半导体固态紫外光源材料及器件关键技术”项目年度汇报总结会议在厦门顺利召开。会议在科技部高技术研究发展中心指导下,由中国科学院半导体研究所主办召开,西安电子科技大学郝跃院士担任项目专家组组长,项目专家组成员包括中国科学院半导体研 ...
    本站小编 Free考研 2020-05-25
  • 半导体所应邀撰写用于可穿戴电子的柔性/可拉伸超级电容器的综述论文
    柔性/可拉伸超级电容器由于具备尺寸小、结构多变、安全性高以及舒适度好等优点,成为可穿戴电子设备中供电单元的热门候选者之一。与传统电容器、锂离子等相比,超级电容器可以提供更高的功率密度,更快的充电速度以及更长的使用周期,这些参数对于可穿戴电子的进一步优化与发展至关重要。从超级电容器的组成成分来看,柔性 ...
    本站小编 Free考研 2020-05-25
  • 战略性先进电子材料重点专项“有源红外气体传感材料与器件及应用”项目启动会召开
    2017年11月1日,中国科学院半导体研究所潘教青研究员承担的国家重点研发计划战略性先进电子材料专项项目“有源红外气体传感材料与器件及应用”启动会在在北京西郊宾馆召开。此次会议在科技部高技术研究发展中心指导下由我所主办。科技部高技术研究发展中心材料处史冬梅处长、专项主管杨斌处长、项目责任专家与咨询专 ...
    本站小编 Free考研 2020-05-25
  • 半导体所在多功能电子皮肤研究方面取得新进展
    皮肤作为人体最大的器官,负责人体内部与外界环境的交互。在其柔软的组织下面分布着一个庞大的传感器网络,从而实时获得温度、压力、气流等外界信息的变化。电子皮肤通过模拟人类皮肤的传感功能,能实现或超越皮肤的传感性能,在机器人、人工义肢、医疗检测和诊断等方面展现应用前景。随着信息技术的不断进步,人们对发展高 ...
    本站小编 Free考研 2020-05-25
  • 半导体所在柔性自供电多功能电子皮肤研究方面取得新进展
    随着仿生学、机器人学等学科的发展,可以模仿人体皮肤和器官感知身体环境,监测人类活动和个人生理健康的人造电子皮肤正在引起广泛的关注和迅速的发展。为了模仿人体皮肤的综合性能,人造电子皮肤需要整合不同的感应模块,实现同时区分各种物理刺激,包括应变,扭曲,温度,光照,湿度和环境气体等。此外,能量存储器件也需 ...
    本站小编 Free考研 2020-05-25
  • 美国加州大学伯克利分校与中科院半导体所等首次实现电子谷自由度的电学调控
    最近,美国加州大学伯克利分校教授张翔研究组与中科院半导体所半导体超晶格国家重点实验室研究员赵建华研究组等合作,首次在单层过渡族金属二硫化物(TMDC)材料中实现了电子谷自由度的电学调控。研究成果4月4日在线发表于《自然纳米技术》(Nature Nanotechnology,DOI: 10.1038/ ...
    本站小编 Free考研 2020-05-25
  • 半导体所在人造仿生电子皮肤研究方面取得新进展
    电子皮肤即新型可穿戴柔性仿生触觉传感器,是一种用于实现仿人类触觉感知功能的人造柔性电子器件。该类器件在消费电子、军事、医疗健康等领域具有极大的应用潜力。相对于听觉、视觉而言,触觉感官的模仿十分困难,因为模拟触摸感觉需要发展高空间分辨率、高灵敏度、快速响应和大尺寸的压力传感器阵列,并且为了模仿自然皮肤 ...
    本站小编 Free考研 2020-05-25