删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

超声辅助EDDS/EGTA淋洗对土壤重金属形态、环境风险的影响及响应面优化

本站小编 Free考研考试/2021-12-31

荀志祥, 姚静波, 王明新, 朱颖一, 王城晨
常州大学环境与安全工程学院, 常州 213164
收稿日期: 2017-12-25; 修回日期: 2018-02-03; 录用日期: 2018-02-03
基金项目: 江苏省产学研合作研究项目(No.BY2015027-08);江苏省"六大人才高峰"培养对象资助项目(No.JNHB-003);江苏省普通高校专业学位研究生实践创新计划项目
作者简介: 荀志祥(1991-), 男, E-mail:821194824@qq.com
通讯作者(责任作者): 王明新, E-mail:wmxcau@163.com

摘要: 采用响应面法实验设计研究了超声辅助EDDS/EGTA淋洗对Cu、Zn、Pb和Cd等不同重金属的洗脱效果和对残留重金属化学形态分布的影响,以超声功率、初始pH、EDDS投加量、EGTA投加量作为考察对象,以各重金属去除率及其环境风险削减率为响应值进行了模拟和优化.结果表明,EDDS对Pb的洗脱效率最高,Cu、Zn次之,Cd最低;EGTA对Cd的洗脱效率最高,Pb、Zn次之,Cu最低;超声功率对Cu、Pb去除强化效果明显,对Cd影响小,对Zn无显著影响;初始pH值为酸性时,Cu和Zn去除率高,碱性时Pb去除率较高,Cd去除率有所下降.EDDS与EGTA投加量及EGTA投加量与初始pH值对环境风险总削减率存在交互作用.超声辅助EDDS/EGTA对可还原态重金属洗脱效果较好,但容易导致弱酸提取态Cu和Pb残留率有所升高.响应面优化结果表明,当EDDS和EGTA投加量分别为重金属总摩尔数的1.92和2.56倍、超声功率为600 W、淋洗液初始pH值为5.27时,环境风险总削减率达到77.58%,与模拟值相近,模型具有较好的模拟和预测能力.
关键词:土壤重金属淋洗形态环境风险响应面法
Effects of ultrasound-assisted EDDS/EGTA washing on specification and environmental of heavy metals in soil and optimization by response surface method
XUN Zhixiang, YAO Jingbo, WANG Mingxin , ZHU Yingyi, WANG Chengchen
School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164
Received 25 December 2017; received in revised from 3 February 2018; accepted 3 February 2018
Supported by the University-Industry Cooperation Program of Jiangsu Province (No. BY2015027-08), the Training Object Financing Project of "Six Major Talent Summit" in Jiangsu Province (No.JNHB-003) and the Project of Practical Innovation of Professional Degree Graduate Students in Jiangsu Province
Biography: XUN Zhixiang(1991—), male, E-mail:821194824@qq.com
*Corresponding author: WANG Mingxin, E-mail:wmxcau@163.com
Abstract: The response surface method was used to design an experiment and investigate the effect of ultrasound-assisted EDDS/EGTA washing on the removal efficiency of heavy metals including Cu, Zn, Pb and Cd in soil and the specification of residual heavy metals. Taking the ultrasonic power, initial pH, EDDS dose and EGTA dose as the factors, and the removal rate of heavy metals and environmental risk as the response values, the relationship between response values and factors was fitted and optimized. The results showed that the removal efficiency of Pb by EDDS was the highest, following by Cu and Zn, and Cd was the lowest. The EGTA showed the highest removal rate of Cd, following by Pb, Zn and Cu. The ultrasonic power showed significant removal effect on Cu and Pb, little effect on Cd, and no significant effect on Zn. The removal rates of Cu and Zn were high under acid condition. Under alkaline condition, the removal rate of Pb was high while the removal rate of Cd decreased. The ultrasound-assisted EDDS/EGTA showed high washing efficiency of heavy metals in reducible state, but may lead to the increase of copper and lead in weak acid extractable state. EDDS and EGTA, EGTA and initial pH both showed interaction effect on reduction rate of the total environmental risk. The response surface optimization results showed that the optimal washing condition was as following:the EDDS dose was 1.92, the EGTA dose was 2.56, the ultrasonic power was 600 W and the initial pH was 5.27, the reduction rate of total environmental risk was 77.58%, which was similar to the simulated value. Therefore, the model has good fitting and predicting ability.
Key words: soilheavy metalwashingspeciationenvironmental riskresponse surface methodology
1 引言(Introduction)随着工业化和城市化的发展, 重金属污染成为日益严重的环境问题之一.城市建设和工厂外迁遗留下大批重金属污染场地(Shao et al., 2016黄文华等, 2016), 其土壤存在严重的环境风险, 迫切需要快速有效的修复技术.重金属污染土壤修复技术主要有固定/稳定化、热处理、氧化还原、淋洗修复技术等(李玉双等, 2011Oves et al., 2016).其中, 淋洗技术能够快速、高效地洗脱土壤中的重金属(Torres et al., 2012), 适用于污染集中、修复面积小、污染严重的区域(李实等, 2014Elghdalgren et al., 2009), 因而成为重金属污染土壤修复的主要技术之一(孙涛等, 2015).
化学螯合剂中乙二胺四乙酸(Ethylenediaminetetraacetic acid, 简称EDTA)因其对土壤中多种重金属具有较好的螯合能力和洗脱效果而得到了广泛的研究和应用, 但EDTA难于生物降解, 在土壤中的半衰期较长, 残留时间较长, 因此许多****采用容易生物降解的螯合剂如N, N′-乙二胺二琥珀酸(N, N′-ethylenediaminedisuccinic acid, 简称EDDS)、谷氨酸二乙酸四钠(N, N-Bis(carboxymethyl)-L-glutamic acid tetrasodium salt, 简称GLDA)、乙二醇双(2-氨基乙基醚)四乙酸(Ethylenebis(oxyethylenenitrilo)tetraacetic acid, 简称EGTA)等来替代或部分替代EDTA, 但这些替代螯合剂往往仅对某一种或几种重金属具有较好的洗脱效果, 因此需要根据土壤中重金属种类选择适宜的螯合剂进行混合淋洗才能取得较好的效果.此外螯合剂的使用会转变土壤中重金属的存在形态(Y?ld?r?m et al., 2016), 需要对其产生的环境风险进行评价和管控.因为重金属污染风险不仅取决于重金属的总浓度(谭业华等, 2011), 也与重金属的化学形态及其生物可利用性有关(Lim et al., 2008Kwon et al., 2001), 重金属的总浓度并不能为判断重金属的生物可利用性和毒性提供足够的信息量(Sundaray et al., 2011).目前大部分相关研究主要关注淋洗剂及淋洗条件对不同重金属的洗脱效果, 很少关注淋洗剂对土壤中不同形态重金属转化的影响, 也很少关注淋洗对土壤重金属环境风险的削减效果(Zang et al., 2013).
本研究以含Cu、Zn、Pb和Cd等多金属污染土壤为供试对象, 采用响应面中心组合设计方法, 模拟超声辅助EDDS/EGTA混合淋洗剂对土壤重金属的洗脱效果及对残留重金属形态分布的影响.采用综合考虑了重金属残留量、生物有效性和生理毒性的环境风险削减率为响应值, 拟合重金属去除率和环境风险削减率与淋洗条件的关系并进行拟合和优化, 旨在为利用超声强化可生物降解螯合剂快速淋洗修复重金属污染土壤提供科学依据.
2 材料和方法(Materials and methods)2.1 试验材料供试土壤取自江苏省常州市武进区科教城周边菜地清洁土壤, 经自然风干后, 去除碎石及杂草, 研磨过5 mm尼龙筛, 加入一定量的重金属溶液染土并静置1 a.所用试剂分别为:CuSO4·5H2O、ZnSO4·7H2O、Pb(NO3)2, CdCl2·5H2O.四分法取部分土样研磨后, 过100目筛, 供重金属全量分析用.土壤重金属含量及形态见表 1.
表 1(Table 1)
表 1 供试土壤的重金属含量 Table 1 Heavy metal concentration of the test soil
表 1 供试土壤的重金属含量 Table 1 Heavy metal concentration of the test soil
重金属种类 含量/
(mg·kg-1)
弱酸提取态 可还原态 可氧化态 残渣态
Cu 585.67 36.22% 40.96% 5.82% 17.01%
Zn 946.84 39.94% 40.80% 4.32% 14.94%
Pb 756.09 4.06% 76.86% 8.97% 10.11%
Cd 13.46 40.34% 24.41% 3.93% 31.31%


2.2 实验设计前期实验结果和前人文献报道表明EDDS对Zn、Pb有较好的洗脱效果, EGTA对Cd有很强的螯合能力(薛腊梅等, 2013;伊雪等, 2014), 超声功率和初始pH对淋洗效果有一定影响(张春雷等, 2014).因此本文选取EDDS投加量、EGTA投加量、超声功率、初始pH等4个对重金属洗脱效果影响较大的因素为考察对象, 每个因素设置3个水平, 采用响应面优化法设计实验处理, 各因素与水平设计如表 2所示.响应面法(Response Surface Methodology, RSM)是一种综合实验设计和数学建模的优化方法, 通过对部分代表性点进行实验, 拟合出各因素与实验结果之间的函数关系, 建立连续变量曲面模型, 确定实验因素及其交互作用在工艺过程中对响应值的影响, 对实验条件进行优化并预测实验结果.同传统的单因素或正交实验相比, 响应面法具有实验次数少、准确率高、直观性强和预测性好等优点(Ahmad et al., 2005Wang et al., 2011).
表 2(Table 2)
表 2 实验因素与水平设计 Table 2 Experimental factors and level design
表 2 实验因素与水平设计 Table 2 Experimental factors and level design
水平 EDDS
投加量
EGTA
投加量
超声功
率/W
pH
最小值 0 0 240 3
中值 1 2 420 6
最大值 2 4 600 9
注:EDDS投加量是EDDS摩尔数与土壤重金属总摩尔数的比值表示, 无量纲;EGTA投加量是EGTA摩尔数与土壤重金属总摩尔数的比值表示, 无量纲, 下同.


2.3 重金属含量及化学形态分析将污染土壤混合均匀后取适量土样研磨过100目筛备用.每个处理称取1 g污染土样于100 mL离心管中, 加入一定量的淋洗剂, 超声淋洗40 min, 然后经4000 r·min-1离心20 min后, 取上清液, 用火焰原子吸收分光光度法测定金属离子的含量.采用连续提取形态分析法(BCR)(Ruban et al., 1999)测定各重金属化学形态, 称取1 g土样放入100 mL离心管中, 将重金属形态分为弱酸提取态、可还原态、可氧化态和残渣态4种形态, 采用火焰原子吸收分光光度法测定不同形态Cu、Zn、Pb和Cd的质量浓度.
2.4 环境风险评价风险评价编码(Risk Assessment Code, 简称RAC)是重金属风险评价的一种方法.根据重金属的化学形态对风险等级进行分类风险标准如表 3所示(Perin et al., 1985).潜在生态风险指数法(Potential Ecological Risk Index, 简称RI)是由瑞典****Hakanson(1980)建立的评价重金属污染及生态风险性的方法.RAC忽略了不同重金属的毒性反应因子, RI考虑了重金属的毒性和总含量, 但忽略了生物有效性的影响.
表 3(Table 3)
表 3 模糊毒性指数?值 Table 3 Values of ?
表 3 模糊毒性指数?值 Table 3 Values of ?
风险 金属碳酸盐和可交换组分 ?
无风险 < 1% 1.00
低风险 1%~10% 1.00
中风险 11%~30% 1.20
高风险 31%~50% 1.40
极高风险 > 50% 1.60


本文采用基于模糊毒性指数改进的潜在生态风险指数法(Modified Potential Ecological Risk Index, 简称MRI)对淋洗后的土壤进行环境风险评价(Zhu et al., 2012胡延彪等, 2016).该方法采用RAC对RI进行修正, 计算公式如下所示.
(1)
(2)
(3)
(4)
(5)
式中, Ω为重金属质量比的模糊修正系数, A为弱酸提取态的占比;?为模糊毒性指数;B为1-ACDi为第i种重金属含量;Cfi为第i种重金属的超标倍数;Cni为土壤中第i种重金属的背景值, 采用江苏省土壤重金属背景值, 其数值分别为Cu(23.40)、Zn(64.80)、Pb(22.00)和Cd(0.085)(国家环境保护局, 1990);Eri为第i种重金属的潜在生态风险系数;Tri为第i种重金属的毒性响应系数;其数值分别为:Cu(5)、Zn(1)、Pb(5)、Cd(30)(李一蒙等, 2015);RI为多元素潜在生态风险指数;, , 和MRI分别为CDi, Cfi, Eri和RI的修正形式.
淋洗后的土壤重金属环境风险削减率采用下式计算.
(6)
(7)
式中, β为不同重金属环境风险削减率;为修正的第i种重金属的潜在生态风险指数;为淋洗前修正的第i种重金属的潜在生态风险指数;β为重金属环境风险总削减率;MRI为淋洗后土壤改进潜在生态风险综合指数;MRI0为淋洗前土壤改进潜在生态风险综合指数.β计算结果见表 7.
表 7(Table 7)
表 7 不同淋洗条件下重金属环境风险削减率 Table 7 Reduction rates of heavy metal under different washing conditions
表 7 不同淋洗条件下重金属环境风险削减率 Table 7 Reduction rates of heavy metal under different washing conditions
序号重金属环境风险削减率重金属环境风险
总削减率
Cu Zn Pb Cd
1 27.4% 27.69% 52.75% 50.76% 50.18%
2 31.69% 47.8% 74.94% 75.93% 74.74%
3 11.84% 34.48% 93.56% 61.87% 61.49%
4 31.71% 32.24% 46.97% 50.02% 49.43%
5 33.26% 42.53% 53.01% 74.82% 73.07%
6 40.24% 48.06% 51.71% 76.26% 74.57%
7 77.76% 63.42% 39.57% 75.77% 74.72%
8 46.92% 43.82% 31.08% 72.24% 70.33%
9 37.36% 31.95% 62.79% 55.74% 55.43%
10 32.13% 46.14% 58.92% 77.46% 75.71%
11 57.94% 52.7% 26.3% 70.89% 69.21%
12 28.34% 42.51% 60.68% 74.84% 73.19%
13 42.56% 52.28% 82.58% 75.9% 75.21%
14 12.51% 36.89% 74.9% 68.12% 66.87%
15 8.66% 32.39% 74.85% 67.63% 66.29%
16 52.03% 60.27% 32.68% 71.26% 69.63%
17 38.29% 40.36% 75.23% 56.34% 56.41%
18 61.97% 39.72% 12.52% 35.16% 35.16%
19 26.14% 42.04% 54.1% 73.42% 71.6%
20 16.23% 35.92% 88.64% 70.1% 69.23%
21 26.86% 46.05% 60.43% 78.03% 76.17%
22 24.81% 43.34% 49.73% 76.02% 73.9%
23 28.68% 51.21% 74.07% 76.83% 75.49%
24 18.64% 52.48% 71.95% 74.41% 72.91%
25 9.7% 13.84% 28.97% 68.19% 65.45%
26 20.49% 38.71% 45.42% 73.18% 70.98%
27 54.55% 63.37% 23.45% 70.3% 68.52%
28 24.06% 44.18% 81.6% 73.84% 72.76%
29 17.36% 10.39% 1.18% 46.33% 44.19%


2.5 模型拟合和优化采用Design-expert 8.0和二次多项式模型对重金属去除率、MRI削减率与淋洗条件之间的数量关系进行逐步回归拟合, 分析模型的显著性及可靠性, 得到回归方程和优化条件, 对优化结果进行验证.
3 结果与讨论(Results and discussion)3.1 各重金属去除率及其形态分布变化分析采用Design-expert 8.0的Box-Behnken进行实验设计得到29个处理, 用火焰原子吸收分光光度法测定淋洗液中金属离子含量后, 经计算得到Cu、Zn、Pb和Cd等重金属的去除率(表 4), 对淋洗后的土壤采用BCR进行连续提取测定, 经计算得到Cu、Zn、Pb和Cd等重金属各不同形态的残留率(表 5).各不同形态重金属的残留率为淋洗后该形态重金属残留量占淋洗前该重金属总量的百分比.
表 4(Table 4)
表 4 Box-Behnken design实验设计及各淋洗条件下各重金属去除率 Table 4 Box-Behnken design and heavy metal removal efficiency under different washing conditions
表 4 Box-Behnken design实验设计及各淋洗条件下各重金属去除率 Table 4 Box-Behnken design and heavy metal removal efficiency under different washing conditions
序号 EDDS投加量 EGTA投加量 超声功率/W 初始pH Cu去除率 Zn去除率 Pb去除率 Cd去除率
1 1 0 420 9 26.57% 26.67% 54.62% 51.49%
2 2 2 600 6 42.39% 42.74% 75.90% 75.39%
3 1 4 420 9 33.12% 33.08% 94.32% 61.98%
4 1 0 240 6 30.46% 30.60% 46.97% 49.49%
5 1 2 420 6 43.19% 40.59% 54.15% 74.34%
6 1 2 420 6 51.88% 47.08% 52.95% 76.17%
7 1 2 600 3 82.84% 64.12% 46.93% 79.13%
8 0 2 420 3 57.86% 51.62% 42.16% 76.68%
9 1 0 600 6 37.92% 31.41% 63.76% 51.35%
10 1 2 420 6 44.58% 45.11% 58.92% 77.53%
11 2 2 420 3 68.34% 58.09% 37.58% 74.84%
12 1 2 420 6 42.60% 41.53% 61.53% 74.12%
13 1 4 600 6 54.59% 51.10% 84.55% 78.79%
14 1 2 600 9 30.04% 30.76% 76.02% 68.31%
15 1 2 240 9 25.20% 25.41% 75.59% 68.15%
16 1 4 420 3 60.25% 67.32% 52.27% 75.70%
17 2 0 420 6 32.97% 34.10% 75.96% 52.03%
18 1 0 420 3 62.06% 39.70% 16.19% 33.04%
19 2 2 240 6 37.81% 36.24% 55.14% 73.69%
20 2 2 420 9 31.00% 33.75% 88.99% 70.33%
21 1 2 420 6 42.15% 45.06% 61.34% 78.01%
22 0 2 600 6 36.06% 42.16% 51.28% 75.94%
23 0 4 420 6 39.42% 50.42% 77.67% 77.38%
24 1 4 240 6 34.33% 51.91% 72.70% 75.07%
25 0 2 420 9 23.62% 12.74% 32.56% 71.73%
26 0 2 240 6 30.83% 37.47% 46.86% 73.21%
27 1 2 240 3 62.22% 67.41% 32.53% 71.11%
28 2 4 420 6 37.54% 43.63% 83.70% 77.04%
29 0 0 420 6 10.73% 9.33% 4.20% 40.97%



表 5(Table 5)
表 5 不同形态重金属残留率 Table 5 The retention percentages of heavy metal in different state
表 5 不同形态重金属残留率 Table 5 The retention percentages of heavy metal in different state
序号不同形态Cu残留率 不同形态Zn残留率 不同形态Pb残留率 不同形态Cd残留率
弱酸
提取态
可还
原态
可氧
化态
残渣态 弱酸
提取态
可还
原态
可氧
化态
残渣态 弱酸
提取态
可还
原态
可氧
化态
残渣态 弱酸
提取态
可还
原态
可氧
化态
残渣态
1 24.23% 31.30% 9.61% 8.30% 26.32% 33.98% 1.83% 11.20% 9.37% 27.52% 5.45% 3.04% 21.69% 20.92% 4.16% 1.73%
2 34.32% 6.59% 5.23% 11.48% 16.41% 29.02% 0.76% 11.07% 4.81% 14.37% 4.15% 0.77% 8.35% 10.36% 3.79% 2.10%
3 56.75% 2.63% 2.89% 4.62% 22.66% 30.17% 1.96% 12.13% 1.89% 1.70% 1.89% 0.20% 15.67% 4.90% 3.79% 13.65%
4 21.60% 25.34% 9.22% 13.39% 22.95% 31.53% 1.18% 13.74% 4.23% 27.32% 5.63% 15.85% 18.83% 19.17% 3.56% 8.94%
5 32.67% 6.17% 5.54% 12.44% 18.1% 30.68% 1.64% 8.99% 5.68% 21.86% 4.92% 13.39% 8.95% 11.25% 3.19% 2.26%
6 33.83% 4.28% 4.43% 5.59% 18.30% 30.97% 1.45% 2.20% 6.19% 21.22% 4.22% 15.42% 9.36% 10.47% 2.90% 1.09%
7 13.83% 0.65% 1.67% 1.02% 16.37% 17.51% 0.68% 1.32% 18.39% 19.6% 5.62% 9.46% 12.11% 6.35% 1.07% 1.33%
8 31.05% 0.62% 1.68% 8.80% 27.96% 18.50% 0.67% 1.25% 27.69% 23.13% 4.49% 2.53% 14.86% 7.09% 1.19% 0.17%
9 24.09% 21.59% 7.93% 8.48% 25.82% 30.39% 0.78% 11.6% 4.86% 24.69% 5.13% 1.56% 13.74% 17.63% 2.98% 14.29%
10 37.14% 6.10% 5.43% 6.76% 18.95% 32.41% 1.84% 1.69% 3.81% 19.06% 4.15% 14.06% 9.28% 11.18% 1.56% 0.44%
11 27.48% 1.23% 1.34% 1.62% 21.57% 18.92% 0.75% 0.67% 28.2% 19.27% 6.25% 8.70% 14.41% 6.46% 1.48% 2.80%
12 41.07% 5.69% 5.20% 5.45% 20.50% 31.24% 1.77% 4.96% 4.23% 20.23% 4.49% 9.52% 8.35% 10.44% 2.04% 5.04%
13 33.92% 1.77% 2.26% 7.47% 16.11% 27.18% 1.24% 4.37% 4.93% 7.72% 2.63% 0.17% 11.29% 6.80% 2.55% 0.56%
14 50.34% 5.70% 4.86% 9.07% 19.78% 33.66% 2.14% 13.66% 5.62% 13.99% 3.77% 0.60% 13.33% 10.55% 3.70% 4.10%
15 49.63% 9.95% 5.76% 9.47% 19.09% 38.35% 2.17% 14.98% 3.72% 14.69% 3.71% 2.29% 14.37% 12.93% 4.31% 0.23%
16 25.29% 1.64% 0.99% 11.84% 20.96% 11.08% 0.11% 0.53% 32.65% 10.50% 2.98% 1.60% 15.13% 5.94% 2.71% 0.51%
17 18.08% 23.16% 8.25% 17.55% 16.35% 28.95% 1.27% 19.33% 1.22% 14.22% 2.80% 5.80% 13.68% 18.60% 4.60% 11.08%
18 14.01% 15.56% 7.22% 1.16% 24.04% 27.39% 1.21% 7.66% 18.33% 38.07% 10.47% 16.94% 20.87% 24.03% 3.51% 18.54%
19 37.28% 3.60% 4.20% 17.12% 17.31% 29.87% 2.10% 14.48% 5.22% 20.21% 4.63% 14.80% 11.40% 10.14% 1.86% 2.9%
20 44.85% 3.33% 5.08% 15.75% 20.17% 33.50% 2.30% 10.28% 1.76% 6.52% 2.53% 0.20% 12.63% 11.37% 2.64% 3.02%
21 43.14% 3.05% 4.05% 7.62% 19.08% 29.67% 1.70% 4.49% 4.54% 18.53% 3.64% 11.95% 8.80% 9.14% 3.56% 0.48%
22 36.91% 5.14% 4.49% 17.41% 19.67% 30.84% 2.14% 5.19% 7.76% 21.99% 4.76% 14.21% 9.47% 10.47% 1.11% 3.00%
23 35.13% 2.29% 2.19% 20.98% 17.52% 23.16% 1.69% 7.21% 9.01% 10.40% 2.52% 0.40% 10.73% 6.28% 3.19% 2.41%
24 45.80% 2.92% 2.73% 14.23% 17.54% 28.36% 1.55% 0.64% 3.76% 13.65% 2.65% 7.24% 11.96% 7.95% 3.64% 1.37%
25 45.01% 3.16% 2.38% 25.84% 31.65% 32.49% 3.45% 19.67% 17.94% 22.73% 6.36% 20.41% 14.45% 6.61% 2.08% 5.12%
26 36.44% 3.93% 3.3% 25.51% 21.39% 30.14% 1.76% 9.24% 7.22% 26.10% 5.02% 14.80% 10.88% 8.95% 3.34% 3.61%
27 23.76% 1.26% 1.70% 11.07% 16.48% 15.48% 0.57% 0.06% 22.69% 21.90% 6.59% 16.29% 14.00% 8.20% 0.82% 5.86%
28 40.80% 1.62% 2.40% 17.65% 20.92% 28.46% 1.41% 5.58% 5.24% 7.52% 2.67% 0.87% 12.37% 6.31% 3.42% 0.85%
29 26.74% 33.38% 8.19% 20.97% 33.13% 38.42% 1.03% 18.09% 15.11% 45.50% 8.43% 26.76% 16.49% 20.24% 4.17% 18.12%


Cu去除率在10.73%~82.84%之间, 处理7的Cu去除率最高, 达到82.84%.供试土壤淋洗前弱酸提取态Cu占36.22%, 淋洗后部分处理土壤中弱酸提取态Cu残留率有所升高, 可能是部分可还原态Cu转化成了弱酸提取态Cu(Finzgar et al., 2007).魏岚等(2010)研究表明EDDS等螯合剂会使土壤中弱酸提取态重金属含量显著增加而还原态显著下降, 与本研究结果相似.供试土壤中可还原态Cu占40.96%, 经不同淋洗条件淋洗后土壤中残留率呈降低趋势, 可能是一部分可还原态Cu在螯合剂的作用下被洗脱进入淋洗液, 另有一部分转化成了弱酸提取态Cu, 这与伊雪等(2014)的研究结果相似.供试土壤中可氧化态Cu和残渣态Cu较少, 因此各不同处理条件下以上2种形态Cu残留率的变化较小.
Zn去除率在9.33%~67.41%之间, 处理27的Zn去除率最高, 达到67.41%.淋洗前土壤中弱酸提取态Zn占39.94%, 经不同淋洗处理后残留率在16.11%~33.13%之间.淋洗前土壤中可还原态Zn占40.8%, 淋洗后最高残留率为38.42%, 最低为11.08%, 不同淋洗条件下残留率差异很大.淋洗前土壤中可氧化态Zn含量较低, 仅占4.32%, 淋洗后各处理中可氧化态Zn残留率在0.11%~3.45%之间.淋洗前土壤中残渣态Zn占14.94%, 处理11、16、27中残渣态Zn残留率在1%以下, 处理17、25、29中的残留率则有所增加, 可能是由于其它形态的Zn转化成了残渣态Zn.
Pb去除率在4.2%~94.32%之间, 处理3的Pb去除率最高, 达到94.32%.供试土壤淋洗前仅有4.06%的Pb以弱酸提取态存在, 淋洗后多个处理中弱酸提取态Pb残留率有所增加.供试土壤淋洗前Pb主要以可还原态存在, 占78.86%, 淋洗后各处理的可还原态Pb残留率大部分在30.0%以下, 最低为1.70%, 这主要是由于可还原态Pb较易被洗脱, 其中有部分可还原态Pb可能转化为弱酸提取态Pb, 导致弱酸提取态Pb有所增加.各处理可氧化态Pb残留率与淋洗前相近, 残差态Pb残留率则存在较大差异.
Cd去除率在33.04%~79.13%之间, 处理7的Cd去除率最高, 达到79.13%.供试土壤淋洗前弱酸提取态Cd占40.34%, 淋洗后残留率在8.35%~21.69%之间.供试土壤淋洗前可还原态Cd占24.41%, 淋洗后残留率在4.9%~24.03%之间, 呈下降趋势.淋洗前可氧化态Cd含量较少, 淋洗后土壤中残留率相近且差异相对较小.淋洗前土壤中残渣态Cd占31.31%, 经不同淋洗条件淋洗后, 残留率降至较低水平.
3.2 土壤重金属去除率与淋洗条件的关系拟合分别将Cu、Zn、Pb、Cd的去除率导入Design-expert 8.0中, 选择二次多项式采用逐步回归法进行拟合, 得到4个模型, 模型的p值均小于0.0001, 表明回归模型极为显著(陈志良等, 2015), 失拟项均不显著(失拟项p值> 0.05), 模型相关性好.其相应的模型回归方程和方差分析如表 6所示.其它条件取中值的条件下, 不同淋洗条件变化对响应值的影响见图 1.
表 6(Table 6)
表 6 模型回归方程及方差分析 Table 6 Model regression equation and analysis of variance
表 6 模型回归方程及方差分析 Table 6 Model regression equation and analysis of variance
模型 模型F 模型p 失拟项p R2
Cu去除率=68.47+25.21A+11.47B+0.03C-15.39D-3.02AB-7.44A2-
?????????1.50B2+0.76D2
33.87 < 0.0001 0.3670 0.9313
Zn去除率=39.69+17.25A+19.14B-4.50D-3.95AB+1.21AD-0.97BD-
?????????6.45A2-1.02B2
40.61 < 0.0001 0.1947 0.9420
Pb去除率=-26.94-0.53A+16.67B+0.03C+8.72D-8.22AB+5.08AD-
?????????0.70D2
28.52 < 0.0001 0.0881 0.9048
Cd去除率=9.78+3.47A+30.75B+8.42×10-3C+8.21D-1.43AB-1.34BD-
?????????3.58B2-0.50D2
62.87 < 0.0001 0.1485 0.9618
注:A表示EDDS投加量;B表示EGTA投加量;C表示超声功率;D表示初始pH值.



图 1(Fig. 1)
图 1 重金属去除率与淋洗条件的关系 Fig. 1The relationship between heavy metal removal rates and various factors

图 1反映了其它实验因素取参考点(中值)时, 淋洗条件对各重金属去除率的影响程度.横坐标中-1和1分别代表最小值和最大值, -0.5和0.5分别代表最小值与中值的均值、中值与最大值的均值.EDDS和EGTA对Cu的洗脱效果相近, Cu去除率对EDDS和EGTA投加量的依赖性较小, 这可能是由于Cu的稳定常数为18.4, 高于其他金属, 在螯合剂剂量较小时有较大的竞争优势(Hai et al., 2008);酸性条件下有利于Cu的洗脱, 碱性条件下对Cu的洗脱有较大的抑制作用(图 1a).EDDS和EGTA对Zn的去除都有促进作用, 但EDDS作用效果小于EGTA.超声功率对Zn的去除影响较小.Zn在酸性条件下去除率高, 当初始pH为碱性时, Zn去除率大幅下降(图 1b).Pb去除率随EDDS投加量、EGTA投加量、超声功率、初始pH值的增大而升高, 其影响程度为EGTA投加量>EDDS投加量>初始pH值>超声功率(图 1c).Cd的去除效果主要受EGTA投加量的影响, 随着EGTA浓度的增加Cd去除率迅速升高, 但投加量过高也会使Cd的去除率有所下降(图 1d).
3.3 土壤重金属环境风险削减与淋洗条件的关系拟合通过基于模糊毒性指数改进的潜在生态风险指数法计算公式及环境风险削减率公式计算得到Cu、Zn、Pb和Cd等4种重金属的环境风险削减率和重金属环境风险总削减率如表 7所示.
采用Design-Experts 8.0的逐步回归方法拟合各重金属环境风险削减率与淋洗条件之间的关系, 以及重金属环境风险总削减率与淋洗条件之间的关系, 得到如表 8所示的二阶多项式模型及其方差分析结果.
表 8(Table 8)
表 8 模型拟合及方差分析 Table 8 Model fitting and variance analysis
表 8 模型拟合及方差分析 Table 8 Model fitting and variance analysis
模型 模型F 模型p 失拟项p R2
Cu环境风险削减率= 62.93+21.86A-3.65B+0.06C-11.72D-3.19AB+
0.01BC -8.96×10-3CD-5.80A2+0.68D2
34.30 < 0.0001 0.6410 0.9420
Zn环境风险削减率= 50.30+19.10A+16.79B-0.08C-3.90D-4.63AB+
1.10AD-0.57BD-5.66A2-1.00B2+ 1.06E-004C2
27.90 < 0.0001 0.1705 0.9394
Pb环境风险削减率= -52.86-1.40A+16.02B+0.03C+16.00D-8.32AB+
5.37AD-1.21D2
29.00 < 0.0001 0.0819 0.9062
Cd环境风险削减率= 6.35+3.90A+27.03B+ +8.57×10-3C+10.64D-
1.63AB-1.04BD-3.33B2-0.73D2
83.70 < 0.0001 0.1883 0.9710
环境风险总削减率=5.92+4.87A+25.81B+9.79×10-3C+10.19D-
1.87AB-0.97BD-3.11B2-0.71D2
70.75 < 0.0001 0.1420 0.9659
注:A表示EDDS投加量;B表示EGTA投加量;C表示超声功率;D表示初始pH值.


各模型F值较大, p值均小于0.0001, 回归模型极为显著, 失拟项均不显著(失拟项p值> 0.05), 表明回归模型正确, 实验方法可靠.由于采用逐步回归方法进行模型拟合, 确保进入回归模型中的实验因素均为显著(p < 0.05).模型的决定系数R2都在0.90以上, 说明相关性好, 模型可靠性强.
图 2分别为Cu、Zn、Pb、Cd环境风险削减率及环境风险总削减率的观察值与模拟值散点图, 散点基本分布在直线上或是两侧, 表明观察值与模拟值相近, 各模型的拟合效果较好, 反映了各模型均具有良好的预测性和稳定性.
图 2(Fig. 2)
图 2 观察值与模拟值相关性图 Fig. 2Correlation diagram between observed and simulated values

3.4 因素互作的响应面分析图 3a反映超声功率为420 W、初始pH值为6时, EDDS投加量与EGTA投加量的交互作用对环境风险总削减率的影响.当EGTA投加量处于较低位置时, 环境风险总削减率随EDDS投加量的增加而逐渐升高, 但当EGTA投加量较高时, 随着EDDS投加量的增加, 环境风险总削减率有所下降.当EDDS投加量一定时, 环境风险总削减率随EGTA投加量的增加先升高后趋平, 最后又略微下降.这可能是由于EGTA投加量过高后, Cd去除率有所下降, 而Cd的环境风险较大.当然出现这样的结果是EDDS和EGTA对Cu、Zn、Pb和Cd综合作用影响所致, 但Cd的毒性系数较高, 土壤背景值较低, 潜在生态风险指数较大, 因此可能起主导作用.
图 3(Fig. 3)
图 3 MRI削减率响应曲面分析图 Fig. 3Response surface analysis of MRI reduction rate

图 3b反映EDDS投加量为1、超声功率为420 W时, EGTA投加量与淋洗液初始pH值的交互作用对环境风险总削减率的影响.当初始pH一定且较低时, 环境风险总削减率随EGTA投加量的增加先不断升高后趋于平缓.当初始pH值一定且较大时, 环境风险总削减率随EGTA投加量的增加先升高后下降;当EGTA投加量一定且浓度较低时, 环境风险总削减率随着初始pH值的升高而升高.当EGTA投加量一定且浓度较高时, 环境风险总削减率随着初始pH值的升高而降低.
3.5 最优处理条件及验证以环境风险总削减率为响应值, 采用Design-expert 8.0优化得到的最优淋洗条件为:EDDS投加量为1.92、EGTA投加量为2.56、超声功率为600 W, pH值为5.27, 环境风险总削减率模拟值为78.68%.
根据以上模拟结果进行验证实验, 得到Cu、Zn、Pb和Cd等4种重金属的去除率及环境风险削减率如表 9所示.环境风险总削减率为77.58%, 与模拟值相近, 表明模型具有较好的模拟和预测能力, 因而具有一定的应用价值.
表 9(Table 9)
表 9 验证实验条件下重金属去除率及其环境风险削减率 Table 9 Reduction rates heavy metals and environmental risk under validation experiment conditions
表 9 验证实验条件下重金属去除率及其环境风险削减率 Table 9 Reduction rates heavy metals and environmental risk under validation experiment conditions
重金属种类 重金属去除率 环境风险削减率
Cu 45.60% 35.44%
Zn 47.24% 48.39%
Pb 82.88% 81.88%
Cd 78.73% 78.63%


4 结论(Conclusions)1) 超声辅助EDDS/EGTA复合淋洗对Cu、Zn、Pb和Cd均有较好的去除效果, 其中Pb去除率可达90%以上, Cd去除率和环境风险总削减率可达近80%.
2) 淋洗条件对残留重金属形态分布有显著影响, 可还原态重金属洗脱较为显著, 部分处理中弱酸提取态Cu和Pb重金属残留率有所增加, 可能是由于其它形态重金属尤其是还原态重金属转化成弱酸提取态.
3) 采用二次多项式进行逐步回归拟合了MRI削减率与超声强度、初始pH、EDDS投加量和EGTA投加量等4个淋洗条件之间的关系, 各模型均极为显著, 拟合效果较好, 可靠性较高.
4) 以MRI削减率为响应值优化得到的淋洗方案对生理毒性较高的Pb和Cd的洗脱率较高, 各重金属去除率和环境风险总削减率模拟值与验证实验结果相近, 表明模型具有较好的模拟和预测能力.

参考文献
Ahmad A L, Ismail S, Bhatia S. 2005. Optimization of coagulation-flocculation process for palm oil mill effluent using response surface methodology[J]. Environmental Science & Technology, 39(8): 2828–2834.
陈志良, 雷国建, 苏耀明, 等. 2015. 茶皂素与EDTA淋洗对土壤中铅、锌形态的影响[J]. 生态环境学报, 2015, 24(8): 1394–1398.
Delgado J, Barba-Brioso C, Nieto J M, et al. 2011. Speciation and ecological risk of toxic elements in estuarine sediments affected by multiple anthropogenic contributions (Guadiana saltmarshes, SW Iberian Peninsula):I. Surficial sediments[J]. Science of the Total Environment(19): 3666–3679.
Elghdalgren K, Arwidsson Z, Camdzija A, et al. 2009. Laboratory and pilot scale soil washing of PAH and arsenic from a wood preservation site:Changes in concentration and toxicity[J]. Journal of Hazardous Materials, 172(2): 1033–1040.
Finzgar N, Lestan D. 2007. Multi-step leaching of Pb and Zn contaminated soils with EDTA[J]. Chemosphere, 66(5): 824–832.DOI:10.1016/j.chemosphere.2006.06.029
Hai W U, Wang J X, Huang J M, et al. 2008. Optimization of Cudrania extractum tablets formulation by central composite design-response surface methodology[J]. Fudan University Journal of Medical Sciences, 35(3): 363–370.
Hakanson L. 1980. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 14(8): 975–1001.DOI:10.1016/0043-1354(80)90143-8
胡延彪, 李忠武, 黄金权, 等. 2016. 湘江长沙段洲滩菜园土壤重金属潜在生态风险评价[J]. 安全与环境学报, 2016, 16(1): 354–358.
黄文华, 郭鸿. 2016. 工业废弃地景观更新模式研究[J]. 工业建筑, 2016, 46(8): 69–72.
Kwon Y T, Lee C W. 2001. Ecological risk assessment of sediment in wastewater discharging area by means of metal speciation[J]. Microchemical Journal, 70(3): 255–264.DOI:10.1016/S0026-265X(01)00122-9
Lim H S, Lee J S, Chon H T, et al. 2008. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea[J]. Journal of Geochemical Exploration, 96(2/3): 223–230.
李实, 张翔宇, 潘利祥. 2014. 重金属污染土壤淋洗修复技术研究进展[J]. 化工技术与开发, 2014, 2014(11): 27–31.DOI:10.3969/j.issn.1671-9905.2014.11.009
李一蒙, 马建华, 刘德新, 等. 2015. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 2015, 3(3): 1037–1044.
李玉双, 胡晓钧, 孙铁珩, 等. 2011. 污染土壤淋洗修复技术研究进展[J]. 生态学杂志, 2011, 30(3): 596–602.
Oves M, Khan M S, Zaidi A, et al. 2012. Soil Contamination, Nutritive Value, and Human Health Risk Assessment of Heavy Metals:An Overview[M]. Springer Vienna: 1–27.
Perin G, Craboledda L, Lucchese L, et al. 1985. Heavy metal speciation in the sediments of Northern Adriatic Sea. A new approach for environmental toxicity determination[C]. Heavy Metals in the Environment, 454-456
Ruban V, Lópezsánchez J F, Pardo P, et al. 1999. Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment[J]. Journal of Environmental Monitoring Jem, 1(1): 51–56.DOI:10.1039/a807778i
Shao D, Zhan Y, Zhou W, et al. 2016. Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region:Field survey and meta-analysis[J]. Environmental Pollution, 219: 329–336.DOI:10.1016/j.envpol.2016.10.023
Sundaray S K, Nayak B B, Lin S, et al. 2011. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments-A case study:Mahanadi basin, India[J]. Journal of Hazardous Materials, 186(2/3): 1837–1846.
孙涛, 陆扣萍, 王海龙. 2015. 不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展[J]. 浙江农林大学学报, 2015, 32(1): 140–149.DOI:10.11833/j.issn.2095-0756.2015.01.021
谭业华, 魏建和, 陈珍, 等. 2011. 海南槟榔园土壤重金属含量分布与评价[J]. 中国环境科学, 2011, 31(5): 815–819.
Torres L G, Lopez R B, Beltran M. 2012. Removal of As, Cd, Cu, Ni, Pb and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing[J]. Physics and Chemistry of the Earth, 37-39(3): 30–36.
Wang J P, Chen Y Z, Wang Y, et al. 2011. Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology[J]. Water Research, 45(17): 5633–5640.DOI:10.1016/j.watres.2011.08.023
魏岚, 陈亚华, 钱猛, 等. 2006. 可降解螯合剂EDDS诱导植物修复重金属污染土壤的潜力[J]. 南京农业大学学报, 2006, 29(2): 33–38.
Y?ld?r?m G, Tokal?o?lu ?. 2016. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis[J]. Ecotoxicol Environ Saf, 128: 266–266.DOI:10.1016/j.ecoenv.2015.12.041
尹雪, 陈家军, 吕策. 2014. 螯合剂复配对实际重金属污染土壤洗脱效率影响及形态变化特征[J]. 环境科学, 2014, 35(2): 733–739.
Zang S Y, Wang Z K, De M A. 2013. Heavy metal pollution in the soil in-situ and the concerned evaluation of the mineral storage yards of Tianjin Port Harbor[J]. Journal of Safety and Environment, 13(4): 146–150.
中国环境监测总站. 1990. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社.
周智全, 张玉歌, 徐欢欢, 等. 2016. 化学淋洗修复重金属污染土壤研究进展[J]. 绿色科技, 2016(24): 12–15.
Zhu H N, Yuan X Z, Zeng G M, et al. 2012. Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index[J]. Transactions of Nonferrous Metals Society of China, 22(6): 1470–1477.DOI:10.1016/S1003-6326(11)61343-5




闂傚倸鍊搁崐宄懊归崶褏鏆﹂柣銏⑶圭粣妤呮煙闁箑鍔掓繛宸簻缁狅綁鏌ㄩ弮鍥棄闁逞屽墮濞硷繝寮婚妸鈺佺睄闁稿本绋掗悵顏堟⒑缂佹ḿ绠氶柛鈺傜墵楠炲牓濡搁妷顔藉瘜闁荤姴娲╁鎾寸珶閺囥垺鈷掑ù锝勮閺€鐗堢箾閸涱喗绀嬫鐐村灴瀹曟儼顦撮柡鍡檮閹便劌顪冪拠韫婵$偑鍊戦崹鍝勎涢崘銊ф殾闁告鍊i弮鍫濈闁靛ǹ鍎抽鍥⒒閸屾艾鈧悂宕愭搴g焼濞撴埃鍋撶€规洏鍎抽埀顒婄秵娴滃爼鎮㈤崱妯诲弿婵$偠顕ф禍楣冩倵鐟欏嫭澶勯柛銊ョ埣閵嗕線寮撮姀鐙€娼婇梺闈涚箚閸撴繈顢欓弴銏♀拻濞撴埃鍋撴繛浣冲毝銊╁焵椤掆偓閳规垿鍨鹃搹顐㈡灎闂佺硶鏂傞崹钘夘嚕椤曗偓瀹曞ジ鎮㈤崫鍕闂傚倷鑳堕、濠囷綖婢舵劕绀夐柡鍥ュ灪閸庡秵绻涘顔荤凹闁绘挾鍠栭弻锝夊籍閸偅顥栫紓浣割槹濡炰粙寮婚悢纰辨晩闁兼祴鏅濇闁诲氦顫夊ú姗€宕曟總鏉嗗洭寮婚妷锔惧帗闂備礁鐏濋鍡涘煕閹邦喚纾肩紓浣贯缚缁犵偤鏌涢埞鎯т壕婵$偑鍊栫敮鎺斺偓姘煎墴閹偛煤椤忓懐鍘遍梺褰掑亰閸ㄨ京娑甸崼鏇熺厽妞ゆ挾鍣ュ▓鏃堟煃鐟欏嫬鐏撮柛鈹垮劦瀹曞崬螖閸愌冨缂傚倷鑳堕搹搴ㄥ储婵傚憡鍋夐柣鎾虫捣閺嗭箓鏌熸潏鍓х暠缂佺姴顭烽幃妤呮濞戞瑦鍠愰梺纭呮珪缁诲牆顫忓ú顏呯劵闁绘劘灏€氭澘顭胯閹告娊寮婚弴銏犲耿婵°倐鍋撻柍褜鍓欏ḿ锟犵嵁婵犲洦鍊烽柛婵嗗珋閵娾晜鐓ラ柡鍥殔娴滈箖姊洪崨濠冪叆闁硅櫕锚椤繐煤椤忓嫭宓嶅銈嗘尵閸嬫ɑ绔熼弴鐔虹瘈闁冲皝鍋撻柛鎰靛枛瀵即鎮楃憴鍕闁搞劌娼¢悰顔嘉熺亸鏍т壕婵炴垶顏鍫晛闁规儳澧庣壕钘壝归敐鍛础闁宠棄顦伴妵鍕箣濠靛浂妫ょ紓浣戒含閸嬬偟鎹㈠┑瀣鐟滃繒绮诲顒夋富闁靛牆妫楁慨鍌炴煕婵犲啯绀嬮柕鍡楀€圭缓浠嬪川婵犲嫬骞堥梻浣哥枃濡椼劎娆㈤妶澶婄闁绘棃鏅茬换鍡涙煕濞嗗浚妲稿┑顔肩Ф閳ь剝顫夊ú鏍礊婵犲洢鈧線寮撮姀鈩冩珳闂佸憡娲﹂崜娆撳绩椤撶偐鏀介柣妯虹仛閺嗏晠鏌涚€n偆鈽夐摶鐐寸箾閸℃ɑ灏紒鐘冲缁辨帞鈧綆浜炲銊╂煛鐎n亞效闁哄被鍔戦幃銏ゅ传閸曟埊缍侀弻娑氣偓锝呭閹ジ鏌熼懠顑㈠綊顢樻總绋跨倞闁挎繂鎳嶆竟鏇炩攽椤旂粨缂氶柛妯犲洨宓佹慨妞诲亾闁哄被鍊曠叅妞ゅ繐鍟崰姘渻閵堝啫鐏柣鐔叉櫊楠炲啫鈻庨幙鍐╂櫌婵炶揪绲挎灙濠殿喖閰e濠氬磼濞嗘埈妲梺瑙勭ゴ閸撴繄绮悢鑲烘棃宕ㄩ鐐蹭憾闂備胶绮幐鍝モ偓鍨浮瀹曠敻寮撮姀锛勫幈閻熸粌閰i妴鍐幢濞戞瑥浜楅梺闈涱檧婵″洨绮绘ィ鍐╃厵閻庣數枪閸撹鲸绻涢崼鐔掓垿濡甸崟顖涙櫆濠靛倸鎲¢宥囩磽娴h櫣甯涚紒璇茬墦瀹曟椽鍩€椤掍降浜滈柟鐑樺灥椤忔挳鏌℃担绋库偓鍧楀蓟濞戙垹鐒洪柛鎰典簼閸n參姊洪幐搴b槈缂佺粯锚椤繐煤椤忓嫮顦梺鑲┾拡閸撴瑧鏁妷鈺傗拺闁告縿鍎辨牎闂佺粯顨嗙划鎾愁嚕椤愶富鏁嬮柍褜鍓熼悰顔芥償閵婏箑娈熼梺闈涱槶閸庝即宕犻弽顓熲拻濞达絽鎽滅粔娲煕鐎n亷韬€规洘绮岄埥澶婎潩鏉堚晝鍘犻梻浣虹帛閸ㄥ墎婀佺紓浣筋嚙濡繈寮婚悢铏圭<婵☆垵娅i悷銊ヮ渻閵堝懏绂嬮柛瀣躬瀵鎮㈤崜鍙壭ч柟鑲╄ˉ鐎殿剟鏁愭径瀣偓鐢告煟閵忋倖娑ч悽顖氱埣閺屽秶鎷犻弻銉ュ及濡ょ姷鍋涢澶愬箖椤忓牆宸濇い鏍ㄦ皑閸濓拷
2濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姵澹嗙槐鎺斺偓锝庡亾缁扁晜绻涘顔荤盎閹喖姊洪崘鍙夋儓妞ゆ垵娲ㄧ划娆掔疀濞戞瑢鎷洪梺闈╁瘜閸樺ジ宕濈€n偁浜滈柕濞垮劜椤ャ垻鈧娲滈弫濠氬春閳ь剚銇勯幒鎴濐仾闁抽攱鍨块弻娑樷槈濮楀牆浼愭繝娈垮櫙缁犳垿婀佸┑鐘诧工閹冲孩绂掓潏鈹惧亾鐟欏嫭绀冩俊鐐扮矙瀵偊骞樼紒妯轰汗閻庤娲栧ú銈夌嵁濮椻偓濮婄粯鎷呴崨濠冨創濡炪倧瀵岄崹鍫曞箖濡 鏀介悗锝庝簼鏉堝牆鈹戦悙鍙夘棡闁搞劎鍠栧畷鎴﹀箻閼搁潧鏋傞梺鍛婃处閸撴盯鏁嶅鈧铏圭矙閹稿孩宕抽梺杞扮椤兘鎮伴鈧畷姗€鍩¢崘鐐カ闂佽鍑界紞鍡涘磻閹烘嚦娑㈠礃閵娿垺鏂€闂佺粯鍔栧ḿ娆撴倶閿斿墽妫柡澶庢硶鏁堝Δ鐘靛仜椤﹀灚淇婇崼鏇炲耿婵炲棙鍩堥崯搴ㄦ⒒娴g儤鍤€妞ゆ洦鍙冨畷鎴︽倷閺嶇ǹ顦靛浠嬵敇閻旇渹鍖栧┑鐐存尰閼归箖鏁冮敃鍌氱畺闁稿繘妫跨换鍡涙煕濞嗗浚妲稿┑顔兼喘閺屽秶鎷犻弻銉ュ及濡ょ姷鍋涘ú顓炵暦濠婂嫭濯撮柧蹇曟嚀楠炩偓濠电姷鏁告慨鐑姐€傞挊澹╋綁宕ㄩ弶鎴濈€梻鍌氱墛缁嬪牓寮稿澶嬬叆婵犻潧妫欐刊鍏肩箾鐏忔牗娅婇柡灞炬礃缁绘盯鎮欓浣哄絾闂備胶绮幐鍝ユ崲濮椻偓瀵鈽夐姀鐘靛姶闂佸憡鍔忛弲婵嬎囬妸褏纾藉ù锝囨焿閸忓苯顭胯椤ㄥ﹥淇婇悽绋跨妞ゆ牭绲鹃弲婵嬫⒑闂堟稓绠氶柡鍛洴瀹曟粓鏌嗗鍡忔嫼闂佸湱枪濞寸兘鍩婇弴銏$厱闁哄啠鍋撻柣鐔叉櫊閹即顢欓柨顖氫壕闁挎繂绨肩花鎾煛鐎n亪鍙勯柟顔斤耿閹瑩寮堕幋鐘卞枈濠电姰鍨奸~澶娒哄Ο鍏煎床婵炴垶鐟︾紞鍥煕閹炬瀚禒褰掓⒑閸濆嫷鍎涘ù婊呭仱閸┾偓妞ゆ帊绶¢崯蹇涙煕閻樺磭澧甸柟顔矫埞鎴犫偓锝庝簽閸樻挳姊虹涵鍛涧缂佺姵鍨规竟鏇㈠礂閼测晝顔曢梺纭呮彧缂嶄線宕ú顏呯厽闁挎繂娲﹀▍鏇犵磼鏉堛劍灏伴柟宄版噺椤︾増鎯旈妶鍥╁炊闂傚倷鑳舵灙妞ゆ垵鎳橀弫鍐Χ婢舵ɑ鏅梺鎸庣箓椤︿粙寮崱娑欑厓鐟滄粓宕滈悢鐓庢槬闁靛繆鍓濋崕鐔兼煃闁款垰浜鹃梺鍝勵儏闁帮綁寮婚悢琛″亾閻㈢櫥褰掝敁鐏炲彞绻嗛柛娆忣槹鐏忥附鎱ㄦ繝鍕笡闁瑰嘲鎳樺畷銊︾節閸屾稒鐣奸梻鍌欐祰瀹曠敻宕伴崱娑樼?闁汇垻枪閺嬩線鏌涢幇闈涙灈閸ユ挳姊洪崨濠勭焼缂佲偓娓氣偓瀵煡鎮╁畷鍥╃槇闂佹眹鍨藉ḿ褎鐗庢繝娈垮枟鑿ч柛鏂跨焸閹箖宕归銈囨嚌闂侀€炲苯澧存鐐插暙铻栭柛娑卞櫘濡啫鈹戦悙鏉戠仸闁荤喆鍎靛鎶藉醇閵夛腹鎷虹紓渚囧灡濞叉ê鈻嶉崨瀛樼厱濠电姴鍟伴幗鍐煟韫囨搩鍎旀慨濠呮缁辨帒顫滈崱妯兼殽闂備胶绮〃鍫ュ磻閵堝懐鏆︽俊銈呮媼閺佸棝鏌涚仦鍓х煂闁挎稒绮撻弻鈩冨緞婵犲嫬顣堕梺鍛婃煥濞撮鍒掓繝姘缂備焦岣块崢鎾绘⒑閼恒儍顏埶囬挊澹╃喖鍩€椤掑嫭鈷戦悹鍥b偓铏亞缂備緡鍠楅悷銉╂偩閻ゎ垬浜归柟鐑樼箖閺呮繈姊洪棃娑氬缂佺粯甯¢幆宀勬晸閿燂拷547闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗ù锝夋交閼板潡姊洪鈧粔鏌ュ焵椤掆偓閸婂湱绮嬮幒鏂哄亾閿濆簼绨介柨娑欑洴濮婃椽鎮烽弶搴撴寖缂備緡鍣崹鍫曞春濞戙垹绠虫俊銈勮兌閸橀亶姊洪崫鍕妞ゃ劌妫楅埢宥夊川鐎涙ḿ鍘介棅顐㈡祫缁插ジ鏌囬鐐寸厸鐎光偓鐎n剙鍩岄柧缁樼墵閹鏁愭惔鈥茬盎濡炪倕楠忛幏锟�4濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姵澹嗙槐鎺斺偓锝庡亾缁扁晜绻涘顔荤凹闁哄懏鐓¢弻娑㈠Ψ閵忊剝鐝栧銈忓瘜閸ㄨ泛顫忓ú顏呭仭闂侇叏绠戝▓鍫曟⒑缁嬫鍎戦柛鐘崇墵瀹曟椽濮€閵堝懐鐫勯梺閫炲苯澧村┑锛勬暬瀹曠喖顢欓崜褎婢戦梻浣筋潐閸庢娊顢氶鈶哄洭鏌嗗鍡忔嫼缂備礁顑嗛娆撳磿閹扮増鐓欓柣鐔哄閹兼劙鏌i敐鍛Щ妞ゎ偅绮撻崺鈧い鎺戝閳ь兛绶氬顕€宕煎┑鍡氣偓鍨攽鎺抽崐鏇㈠疮椤愶妇宓侀柟鎵閳锋帡鏌涚仦鍓ф噮妞わ讣绠撻弻娑橆潩椤掑鍓板銈庡幖閻忔繈锝炲⿰鍫濈劦妞ゆ巻鍋撻柣锝囧厴椤㈡盯鎮滈崱妯绘珖闂備線娼х换鍫ュ垂閸濆嫧鏋斿Δ锝呭暞閳锋垿姊婚崼鐔剁繁婵$嫏鍐f斀闁炽儴娅曢崰姗€鏌涢埞鍨伈鐎殿噮鍣e畷濂告偄閸濆嫬绠ラ梻鍌欒兌椤㈠﹪锝炴径鎰闁哄洢鍨洪崕宥嗙箾瀹割喕绨奸柣鎾跺枛閺岋綁寮崼鐔告殸闁荤姵鍔х槐鏇犳閹烘挻缍囬柕濞垮劤閻熸煡鎮楅崹顐g凡閻庢凹鍣i崺鈧い鎺戯功缁夐潧霉濠婂懎浠︾紒鍌涘浮閹剝鎯斿Ο缁樻澑闂備胶绮崝妯衡枖濞戞碍顫曢柨鏇炲€归悡鏇熶繆閵堝懎顏柣婵愪簻鑿愰柛銉戝秴濮涢梺閫炲苯澧紒瀣笩閹筋偅绻濆▓鍨仭闁瑰憡濞婇獮鍐ㄧ暋閹佃櫕鐎诲┑鐐叉閸ㄧ敻宕虹仦鍓х閻庢稒岣块惌鎺旂磼閻樺磭澧电€殿喛顕ч埥澶愬閻樼數鏉搁梻浣呵圭换鎰板箺濠婂牆鏋侀柡宥庡幗閳锋垹绱掗娑欑婵炲懏姊荤槐鎺旂磼濡偐鐤勯悗娈垮枦椤曆囧煡婢跺ň鍫柛娑卞灡濠㈡垿姊绘担鐟邦嚋缂佽鍊块獮濠冩償椤帞绋忛梺鍐叉惈閹冲繘鍩涢幋锔界厱婵炴垶锕崝鐔兼煙閾忣偅绀堢紒杈ㄥ笚濞煎繘濡搁敂缁㈡Ч婵°倗濮烽崑娑氭崲濮椻偓楠炲啴鍩¢崘鈺佺彴闂佽偐鈷堥崜锕傚疮鐎n喗鈷掑ù锝呮啞閸熺偛銆掑顓ф疁鐎规洖缍婇獮搴ㄥ礈閸喗鍠橀柛鈺嬬節瀹曘劑顢欑憴鍕伖闂備浇宕甸崑鐐电矙閸儱鐒垫い鎺嗗亾闁告ɑ鐗楃粩鐔煎即閵忊檧鎷绘繛杈剧到閹诧紕鎷归敓鐘插嚑妞ゅ繐妫涚壕濂告煏婵炲灝濡煎ù婊冩贡缁辨帡顢氶崨顓炵閻庡灚婢樼€氫即鐛崶顒夋晣闁绘ɑ褰冪粻濠氭⒒閸屾瑧顦﹂柟纰卞亞閳ь剚鍑归崜娑㈠箲閵忋倕绠抽柡鍐ㄦ搐灏忛梻浣告贡鏋紒銊у劋缁傚秴饪伴崼鐔哄幐闂佹悶鍎洪悡渚€顢旈崼鐔封偓鍫曟煠绾板崬鍘撮柛瀣尭閳绘捇宕归鐣屽蒋闂備胶枪椤戝懘鏁冮妶澶樻晪闁挎繂娲﹀畷澶愭偠濞戞帒澧查柣搴☆煼濮婅櫣鎷犻垾宕団偓濠氭煕韫囧骸瀚庨柛濠冪箓椤繒绱掑Ο璇差€撻梺鑽ゅ枛閸嬪﹪宕电€n剛纾藉ù锝呭閸庢劙鏌涢妸銊ュ姷婵☆偆鍠庨—鍐Χ閸℃ê钄奸梺鎼炲妼缂嶅﹪骞冮悙鍝勫瀭妞ゆ劗濮崇花濠氭⒑閸︻厼鍔嬮柛鈺侊躬瀵劍绻濆顓炩偓鍨叏濡厧浜鹃悗姘炬嫹40缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕闁芥ɑ绻冮妵鍕冀閵娧呯厒闂佹椿鍘介幐楣冨焵椤掑喚娼愭繛鍙夌墪鐓ら柕濞у懍绗夐梺鍝勫暙閻楀﹪鎮″▎鎾寸厵妞ゆ牕妫楅懟顖氣枔閸洘鈷戠€规洖娲ㄧ敮娑欐叏婵犲倻绉烘鐐茬墦婵℃悂濡烽钘夌紦闂備線鈧偛鑻晶鐗堢箾閹寸姵鏆鐐寸墬閹峰懘宕ㄦ繝鍕ㄥ亾椤掑嫭鐓熼幖鎼灣缁夐潧霉濠婂啰鍩i柟顔哄灲瀹曞崬鈽夊▎蹇庡寲闂備焦鎮堕崕鑽ゅ緤濞差亜纾婚柟鎹愵嚙缁€鍌炴煕濞戝崬寮炬俊顐g矌缁辨捇宕掑顑藉亾瀹勬噴褰掑炊閵婏絼绮撻梺褰掓?閻掞箓宕戦敓鐘崇厓闁告繂瀚崳褰掓煢閸愵亜鏋旈柍褜鍓欓崢婊堝磻閹剧粯鐓曢柡鍥ュ妼娴滅偞銇勯幘瀛樸仢婵﹥妞介獮鎰償閿濆洨鏆ゆ繝鐢靛仩鐏忔瑦绻涢埀顒傗偓瑙勬礃閸ㄥ潡鐛Ο鑲╃<婵☆垵顕ч崝鎺楁⒑閼姐倕鏋戦柣鐔村劤閳ь剚鍑归崜鐔风暦閵忥絻浜归柟鐑樻尨閹锋椽姊洪崨濠勭畵閻庢凹鍘奸蹇撯攽鐎n偆鍘遍柟鍏肩暘閸ㄥ綊鎮橀埡鍌欑箚闁告瑥顦慨鍥殰椤忓啫宓嗙€规洖銈搁幃銏ゅ传閸曨偄顩梻鍌氬€烽懗鍓佹兜閸洖绀堟繝闈涙灩濞差亜鍐€妞ゆ劑鍎卞皬缂傚倷绶¢崑鍕偓娈垮墴濮婂宕掑顑藉亾妞嬪孩顐芥慨姗嗗厳缂傛氨鎲稿鍫罕闂備礁鎼崯顐﹀磹婵犳碍鍎楅柛鈩冾樅瑜版帗鏅查柛顐亜濞堟瑩姊洪懡銈呮瀾閻庢艾鐗撳顕€宕煎┑鍡欑崺婵$偑鍊栧Λ渚€锝炴径灞稿亾閸偆澧垫慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电偞鎸荤喊宥夈€冩繝鍌滄殾闁靛繈鍊栫€电姴顭跨捄鐑橆棡闁诲孩妞介幃妤呭礂婢跺﹣澹曢梻浣告啞濞诧箓宕滃☉銏犲偍闂侇剙绉甸埛鎴︽煕濠靛棗顏╅柡鍡欏仱閺岀喓绮欓崹顔规寖婵犮垼顫夊ú鐔肩嵁閹邦厽鍎熸繛鎴烆殘閻╁酣姊绘笟鈧ḿ褎顨ヨ箛鏇燁潟闁哄洠鍋撻埀顒€鍊块幊鐘活敆閸屾粣绱查梻浣告惈閸燁偊宕愰幖浣稿嚑婵炴垶鐟f禍婊堟煏韫囧﹤澧茬紒鈧€n喗鐓欐い鏃囶潐濞呭﹥銇勯姀鈩冪闁挎繄鍋ら、姗€鎮滈崱姗嗘%婵犵數濮烽弫鎼佸磻閻樿绠垫い蹇撴缁€濠囨煃瑜滈崜姘跺Φ閸曨垼鏁冮柕蹇婃櫆閳诲牓姊虹拠鈥虫珯缂佺粯绻堝畷娲焵椤掍降浜滈柟鐑樺灥椤忣亪鏌嶉柨瀣诞闁哄本绋撴禒锕傚箲閹邦剦妫熼梻渚€鈧偛鑻崢鍝ョ磼椤旂晫鎳囬柕鍡曠閳诲酣骞囬鍓ф闂備礁鎲″ú锕傚礈閿曗偓宀e潡鎮㈤崗灏栨嫼闂佸憡鎸昏ぐ鍐╃濠靛洨绠鹃柛娆忣槺婢ц京绱掗鍨惞缂佽鲸甯掕灒闂傗偓閹邦喚娉块梻鍌欐祰椤鐣峰Ο琛℃灃婵炴垯鍩勯弫浣衡偓鍏夊亾闁告洦鍓涢崢鍛婄箾鏉堝墽鍒板鐟帮躬瀹曟洝绠涢弬璁崇盎濡炪倖鎸撮崜婵堟兜閸洘鐓欏瀣閳诲牓鏌涢妸鈺冪暫鐎规洘顨婂畷銊╊敍濞戞ḿ妯嗛梻鍌氬€搁崐椋庢濮樿泛鐒垫い鎺戝€告禒婊堟煠濞茶鐏︾€规洏鍨介獮鏍ㄦ媴閸︻厼骞橀梻浣告啞閸旀ḿ浜稿▎鎾虫槬闁挎繂鎳夐弨浠嬫煥濞戞ê顏柡鍡╁墴閺岀喖顢欓悾灞惧櫚閻庢鍠栭悥濂哥嵁鐎n噮鏁囬柣鎰儗閸熷本绻濋悽闈浶fい鏃€鐗犲畷鏉课旈崨顔芥珖闂佸啿鎼幊搴g矆閸屾稓绠鹃柟瀵稿仧椤e弶銇勯锝嗙闁哄被鍔岄埞鎴﹀幢濡桨鐥柣鐔哥矌婢ф鏁Δ鍛柧闁哄被鍎查悡鏇㈡煃閳轰礁鏆熼柟鍐叉嚇閺岋綁骞橀崘娴嬪亾閹间讲鈧棃宕橀鍢壯囨煕閹扳晛濡垮ù鐘插⒔缁辨帡鎮欓浣哄嚒缂備礁顦晶搴ㄥ礆閹烘鐓涢柛娑卞枛娴滄粎绱掗悙顒€顎滃瀛樻倐瀵彃鈹戠€n偀鎷洪梻鍌氱墛缁嬫挻鏅堕弴鐔虹閻犲泧鍛殼濡ょ姷鍋涘Λ婵嬪极閹邦厼绶為悗锛卞嫬顏归梻鍌欑濠€杈ㄧ仚濠电偛顕崗姗€宕洪妷锕€绶為悗锝冨妺缁ㄥ姊洪幐搴㈩梿妞ゆ泦鍐惧殨妞ゆ洍鍋撻柡灞剧洴閸╃偤骞嗚婢规洖鈹戦敍鍕杭闁稿﹥鐗滈弫顕€骞掑Δ浣规珖闂侀潧锛忛埀顒勫磻閹炬剚娼╅柣鎰靛墮椤忥拷28缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣椤愪粙鏌ㄩ悢鍝勑㈢痪鎹愵嚙椤潡鎳滈棃娑樞曢梺杞扮椤戝洭骞夐幖浣哥睄闁割偁鍨圭粊锕傛⒑閸涘﹤濮﹂柛鐘崇墱缁粯绻濆顓犲幈闂佽宕樼亸娆戠玻閺冨牊鐓冮柣鐔稿缁犺尙绱掔紒妯肩疄濠殿喒鍋撻梺鎸庣箓濡盯濡撮幇顑╂柨螖婵犱胶鍑归梺鍦归崯鍧楁偩瀹勬壋鏀介悗锝庝簻缁愭盯鏌f惔銏⑩姇瀹€锝呮健瀹曘垽鏌嗗鍡忔嫼闂佸憡绻傜€氼剟寮虫繝鍥ㄧ厱閻庯綆鍋呯亸鐢电磼鏉堛劌绗ч柍褜鍓ㄧ紞鍡涘磻閸涱厾鏆︾€光偓閳ь剟鍩€椤掍緡鍟忛柛锝庡櫍瀹曟垶绻濋崶褏鐣烘繛瀵稿Т椤戝懘宕归崒娑栦簻闁规壋鏅涢悘鈺傤殽閻愭潙鐏存慨濠勭帛閹峰懘宕ㄦ繝鍐ㄥ壍婵犵數鍋犻婊呯不閹达讣缍栨繝闈涱儏鎯熼梺鍐叉惈閸婂憡绂掗銏♀拺閻庡湱濮甸妴鍐偣娴g懓绲婚崡閬嶆煕椤愮姴鍔滈柣鎾寸懇閺岋綁骞囬棃娑橆潽缂傚倸绉甸崹鍧楀蓟閻旂厧绀傞柛蹇曞帶閳ь剚鍔欓弻锛勪沪閻e睗銉︺亜瑜岀欢姘跺蓟濞戙垹绠婚柛妤冨仜椤洤螖閻橀潧浠滅紒缁橈耿瀵偊骞樼紒妯绘闂佽法鍣﹂幏锟�1130缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕闁芥ɑ绻冮妵鍕冀閵娧呯厒闂佹椿鍘介幑鍥蓟濞戙垹绠婚柤纰卞墻濡差噣姊洪幖鐐插缂佽鐗撳濠氬Ω閳哄倸浜滈梺鍛婄箓鐎氬懘濮€閵忋垻锛滈梺閫炲苯澧寸€规洘甯¢幃娆戔偓鐢登归獮鍫熺節閻㈤潧浠﹂柛銊ョ埣閺佸啴顢曢敃鈧紒鈺冪磽娴h疮缂氱紒鐘荤畺閺屾盯顢曢敐鍥╃暭闂佺粯甯楅幃鍌炲蓟閿涘嫪娌紒瀣仢閳峰鎮楅崹顐g凡閻庢凹鍣i崺鈧い鎺戯功缁夐潧霉濠婂嫮鐭掗柨婵堝仱瀹曞爼顢楁担鍙夊闂傚倷绶¢崑鍡涘磻濞戙垺鍤愭い鏍ㄧ⊕濞呯姵銇勯弴妤€浜鹃梺鍝勬湰缁嬫帞鎹㈠┑瀣妞ゆ巻鍋撴繛鍫濈焸閺屟囨嚒閵堝懍妲愰梺鍝勬湰濞茬喎鐣烽悡搴樻斀闁搞儜灞拘熸繝鐢靛У椤旀牠宕规导鏉懳ч柟闂寸閽冪喖鏌ㄥ┑鍡╂Ц缂佺媴缍侀弻锝堢疀閺冣偓閵囩喎霉濠婂嫮绠樼紒顔碱儏椤撳吋寰勬繝鍥ф暪闂備礁鎼ú銊╁窗閹捐鍌ㄩ柟闂寸劍閳锋垿鏌涘☉姗堟敾缂佲偓鐎n偆绠惧ù锝呭暱濞诧箓宕愰崼鏇熺叆婵犻潧妫欓ˉ鐘电磼閳锯偓閸嬫捇姊绘笟鈧埀顒傚仜閼活垱鏅堕幘顔界厱闁宠桨绀侀顓犫偓瑙勬礃宀e潡骞戦崟顖毼╃憸蹇涘储椤掆偓閳规垿鎮╁▓鎸庢瘜濠碘剝褰冮幊妯虹暦瑜版帗顥堟繛鎴炵濞堥箖姊婚崒姘卞濞撴碍顨婂畷顖炲川椤斿墽鐦堥梻鍌氱墛缁嬫挻鏅堕姀銏㈡/闁硅鍔栭ˉ澶愭婢舵劖鐓ユ繝闈涙椤曟氨鎲搁悧鍫濈瑨婵鐓¢弻锟犲礃閵娧冾杸闂佺粯鎸搁崯浼村箟缁嬪簱鍫柛顐g箘椤ρ冣攽閻愭潙鐏︾痪鏉跨Ч椤㈡洟鎳為妷锕€寮垮┑鈽嗗灥濞夋洟宕奸鍫熺厓鐟滄粓宕滃▎鎾崇9闁秆勵殔缁犵娀鏌i幇顒佹儓閸烆垶姊洪幐搴㈢5闁稿鎹囬弻娑㈠棘閹稿骸娈楀┑顔硷龚濞咃綁骞夐幘顔肩妞ゆ劑鍨硅闂傚倷绀侀幗婊堝窗鎼粹檪缂氶柨鐔哄Т缁犳牠鏌ㄩ悢鍝勑㈤柛妤佸▕閺岋綁骞囬鍌傦綁鏌i埡濠傜仸妤犵偛鍟抽ˇ鍦偓瑙勬礀閵堟悂銆佸Δ鍛劦妞ゆ帒瀚惌妤呮煛閸モ晛啸缁炬崘妫勯湁闁挎繂瀚惌娆撴煕濠靛﹥顏犵紒杈ㄥ笧閹风娀骞撻幒鎾搭唲閻庡厜鍋撻柨婵嗙墛绾爼鏌熸搴♀枅鐎规洩缍佸畷鎺戔堪閸愨晝浜栫紓鍌欐祰妞村摜鏁幒鏇犱航闂備胶绮崹闈浢洪妸鈺傚仼閺夊牄鍔婃禍婊勩亜閹绢垰澧茬痪顓炵埣閺岀喖鎮烽弶娆句純闂佸湱鍘х紞濠傜暦濠婂牆绠涢柛鎾茶兌閿涚喓绱撴担浠嬪摵閻㈩垽绻濆畷瑙勩偅閸愩劎顦ㄩ悗鐟板閸犳洜妲愰弮鍫熺厽閹兼番鍩勯崯蹇涙煕閿濆骸娅嶇€规洘鍨垮畷鐔碱敍濮樺崬骞掗梺鐟板悑閻n亪宕濆畝鈧划璇测槈濞嗗秳绨婚梺瑙勫礃濞夋稑鏆╅梻浣哥枃椤曆囨儗閸屾凹娼栫紓浣股戞刊鎾煟閻旂厧浜伴柛銈咁儑缁辨挻鎷呴崜鎻掑壉闂佹悶鍔屾晶搴g磽閹惧顩烽悗锝庝簽閻嫰姊虹粙鎸庢拱缂侇喖鑻悾鐑藉Ψ閳哄倻鍘介柟鍏肩暘閸ㄥ鍩婇弴鐐垫殕闁挎繂鎳忛崑銉╂煕閳瑰灝鐏茬€殿噮鍣e畷濂告偄閸濆嫬绠哄┑鐘愁問閸犳鏁冮埡鍛婵ǹ顔愮紞鏍ㄧ節閺囩偛鏆炵紒缁樼箞閹粙妫冨☉妤佸媰婵犵數鍋涢崥瀣偡閳轰胶鏆﹂柕澹偓閸嬫捇鏁愭惔鈩冪亶闂佹悶鍊曢懟顖濈亙闂佹寧绻傞幊搴ㄥ汲濞嗘垹纾奸柣姗€娼ч弸娑㈡煛瀹€鈧崰鏍嵁閸℃稒鍋嬮柛顐亝椤ュ姊婚崒娆愮グ闁跨喆鍎靛畷鎰攽鐎n亣鎽曞┑鐐村灟閸ㄧ懓鏁梻浣烘嚀閻°劎鎹㈤崒鐐叉辈闁靛緵棰佺盎闂佸搫鍊归娆徫i幖浣圭厓閻熸瑥瀚悘鎾煙椤旇娅呴棁澶愭倵閿濆骸浜剧紒杈ㄥ哺濮婄粯绗熼埀顒€岣胯閹囧幢濞戞ḿ鐤囬柟鍏肩暘閸斿矂宕欓悩宕囩闁糕剝蓱鐏忎即鏌嶉柨瀣伌闁诡喖缍婂畷鍫曟晲閸屾矮澹曢梺鎯ф禋閸嬪棙绂嶉弽顓熲拻濞达絽鎲¢崯鐐烘煛鐏炶濡芥い銊e劦楠炴牗鎷呴崫銉ュ箳闂備浇顫夊畷姗€顢氳缁鏁愭径瀣弳闂佸搫鍟崐濠氬箺閸屾稒鍙忓┑鐘插€归崑銉︽叏婵犲啯銇濋柡灞芥嚇閹瑩鎳犵捄渚純濠电姭鎷冪仦鑺ョ彎閻庢鍣崑濠傜暦婵傜ǹ唯闁挎梹鍎抽獮鍫ユ⒑鐠囪尙绠抽柛瀣〒閺侇噣宕崟鍨兊闁荤娀缂氬▍锝夋晬濞戙垺鈷戦柣鐔告緲閳锋梻绱掗鍛仸鐎殿喗鐓¢獮鏍ㄦ媴閸︻厼寮抽梻浣虹帛濞叉牠宕愰崷顓涘亾濮樼偓瀚�
相关话题/土壤 环境 实验 污染 生态