删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Pd/MCM-41对乙醇汽油车尾气排放乙醛的吸附和催化氧化性能

本站小编 Free考研考试/2021-12-31

李俊洁1,,
刘建英1,
胡晓东1,
徐成华1,
刘盛余1,
张雪乔1,
魏荣1
1.成都信息工程大学资源环境学院,成都 610225
基金项目: 国家自然科学基金资助项目(51608061)
四川省科技厅资助项目(2015JY0113)
成都信息工程大学资助项目(J201712)




Adsorption and catalytic oxidation properties of Pd/ MCM-41 for acetaldehyde in gasohol exhausts

LI Junjie1,,
LIU Jianying1,
HU Xiaodong1,
XU Chenghua1,
LIU Shengyu1,
ZHANG Xueqiao1,
WEI Rong1
1.College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China

-->

摘要
HTML全文
(0)(0)
参考文献(30)
相关文章
施引文献
资源附件(0)
访问统计

摘要:以正硅酸乙酯 (TEOS)为硅源,十六烷基三甲基溴化铵 (CTAB)为模板剂,采用水热合成法制备了MCM-41分子筛,以其为载体采用等体积浸渍法制得Pd/MCM-41催化剂,并用于乙醇汽油车冷启动排放乙醛的净化。采用氮气吸附脱附法(BET)、X射线衍射仪(XRD)、透射电子显微镜(TEM)对Pd/MCM-41理化性能进行表征,并用原位傅里叶变换红外技术研究了Pd/MCM-41在空气氛围下对乙醛的净化机理。结果表明:Pd/MCM-41具有规整的六方孔道、孔径分布均匀、比表面积大的特点;常温下,Pd/MCM-41催化剂可快速吸附乙醛,吸附容量可达105 mg·g-1,而吸附在Pd/MCM-41上的乙醛在180~220 ℃之间即可发生氧化而生成CO2和乙酸。
关键词: Pd/MCM-41/
乙醛/
乙醇汽油/
吸附/
催化氧化

Abstract:MCM-41 is synthesized by hydrothermal method using tetraethyl orthosilicate (TEOS) and cetyltrimethyl ammonium bromide (CTAB) as silicon source and template respectively in the present work. At the same time, Pd/MCM-41 is prepared by impregnation using the obtained MCM-41 as support and applied in the adsorption and catalytic oxidation of acetaldehyde in gasohol exhausts. The physicochemical properties of Pd/MCM-41 are characterized by BET, XRD and TEM, respectively. And in-situ FT-IR technology is adopted to evaluate acetaldehyde adsorption and catalytic oxidation properties on Pd/MCM-41 catalyst under air atmosphere. The results show that Pd/MCM-41 exhibits uniform hexagonal channels with a large specific surface area. And the obtained Pd/MCM-41 catalyst can rapidly adsorb acetaldehyde with an adsorption capacity of about 105 mg·g-1 at room temperature. Meanwhile, acetaldehyde adsorbed on Pd/MCM-41 can be easily oxidized to CO2 and acetic acid at 180 to 220 ℃ in air atmosphere.
Key words:Pd/MCM-41/
acetaldehyde/
gasohol/
adsorption/
catalytic oxidation.

加载中
[1] MASUM B M, MASJUKI H H, KALAM M A, et al.Effect of alcohol-gasoline blends optimization on fuel properties, performance and emissions of a SI engine[J].Journal of Cleaner Production, 2015, 86: 230-237
[2] AGARWAL A K, SHUKLA P C, GUPTA J G, et al.Unregulated emissions from a gasohol (E5, E15, M5, and M15) fuelled spark ignition engine[J].Applied Energy, 2015, 154(15): 732-741
[3] CORRêA S M, ARBILLA G, MARTINS E M, et al.Five years of formaldehyde and acetaldehyde monitoring in the Rio de Janeiro downtown area-Brazil[J].Atmospheric Environment, 2010, 44(19): 2302-2308
[4] VISKARI E L, VARTIAINEN M, PASANEN P.Seasonal and diurnal variation in formaldehyde and acetaldehyde concentrations along a highway in Eastern Finland[J].Atmospheric Environment, 2000, 34(6): 917-923
[5] WESTERMANN A, AZAMBRE B, FINQUENEISEL G, et al.Evolution of unburnt hydrocarbons under ‘cold-start’ conditions from adsorption/desorption to conversion: On the screening of zeolitic materials[J].Applied Catalysis B: Environmental, 2014, 158: 48-59
[6] ZHANG B, JI C W, WANG S F, et al.Investigation on the cold start characteristics of a hydrogen-enriched methanol engine[J].International Journal of Hydrogen Energy, 2014, 39(26): 14466-14471
[7] CORRêA S M, MARTINS E M, ARBILLA G.Formaldehyde and acetaldehyde in a high traffic street of Rio de Janeiro, Brazil[J].Atmospheric Environment, 2003, 37(1): 23-29
[8] CORRêA S M, ARBILLA G.Formaldehyde and acetaldehyde associated with the use of natural gas as a fuel for light vehicles[J].Atmospheric Environment, 2005, 39(25): 4513-4518
[9] BORSARI V, ASSUN??O J V.Nitrous oxide emissions from gasohol, ethanol and CNG light duty vehicles[J].Climatic Change, 2012, 111(3/4): 519-531
[10] IODICE P, SENATORE A, LANGELLA G, et al.Effect of ethanol-gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation[J].Applied Energy, 2016, 179: 182-190
[11] LEE J, RYOU Y S, CHO J S, et al.Investigation of the active sites and optimum Pd/Al of Pd/ZSM–5 passive NO adsorbers for the cold-start application: Evidence of isolated-Pd species obtained after a high-temperature thermal treatment[J].Applied Catalysis B: Environmental, 2018, 226: 71-82
[12] VáCLAVíK M, KO?í P, NOVáK V, et al.NOx conversion and selectivity in multi-layer and sequential DOC-LNT automotive exhaust catalysts: Influence of internal transport[J].Chemical Engineering Journal, 2017, 329: 128-134
[13] RAHMAN M M, KIM K H.Exposure to hazardous volatile pollutants back diffusing from automobile exhaust systems[J].Journal of Hazardous Materials, 2012, 241 (4): 267-278
[14] OLIVEIRA R L, LOYOLA J, MINHO A S, et al.PM2.5-bound polycyclic aromatic hydrocarbons in an area of Rio de Janeiro, Brazil impacted by emissions of light-duty vehicles fueled by ethanol-blended gasoline[J].Bulletin of Environmental Contamination and Toxicology, 2014, 93(6): 781-786
[15] DEMIRBAS A.Progress and recent trends in biodiesel fuels[J].Energy Conversion and Management, 2009, 50(1): 14-34
[16] JIAO J L, LI J J, BAI Y.Ethanol as a vehicle fuel in China: A review from the perspectives of raw material resource, vehicle, and infrastructure[J].Journal of Cleaner Production, 2018, 180: 832-845
[17] HEBBEN N, DIEHM C, DEUTSCHMANN O.Catalytic partial oxidation of ethanol on alumina-supported rhodium catalysts: An experimental study[J].Applied Catalysis A: General, 2010, 388(1): 225-231
[18] DEWILDE J F, CZOPINSKI C J, BHAN A.Ethanol dehydration and dehydrogenation on γ-Al2O3: Mechanism of acetaldehyde formation[J].ACS Catalysis, 2014, 4(12): 4425-4433
[19] NAVLANIGARCíA M, PUéRTOLAS B, LOZANOCASTELLó D, et al.CuH-ZSM-5 as hydrocarbon trap under cold start conditions[J].Environmental Science & Technology, 2013, 47(11): 5851-5857
[20] PUéRTOLAS B, LóPEZ J M, NAVARRO M V, et al.Abatement of hydrocarbons by acid ZSM-5 and BETA zeolites under cold-start conditions[J].Adsorption, 2013, 19(2/3/4): 357-365
[21] PUéRTOLAS B, GARCíA-ANDúJAR L, GARCíA T, et al.Bifunctional Cu/H-ZSM-5 zeolite?atement under cold-start conditions[J].Applied Catalysis B: Environmental, 2014, 154 (5): 161-170
[22] USHIKI I, OTA M, SATO Y, et al.VOCs (acetone, toluene, and n-hexane) adsorption equilibria on mesoporous silica (MCM-41) over a wide range of supercritical carbon dioxide conditions: Experimental and theoretical approach by the Dubinin-Astakhov equation[J].Fluid Phase Equilibria, 2015, 403: 78-84
[23] RINTRAMEE K, F?TTINGER K, RUPPRECHTER G, et al.Ethanol adsorption and oxidation on bimetallic catalysts containing platinum and base metal oxide supported on MCM-41[J].Applied Catalysis B: Environmental, 2012, 115: 225-235
[24] ABU-ZIED B M, HUSSEIN M A, ASIRI A M, et al.Development and characterization of the composites based on mesoporous MCM-41 and polyethylene glycol and their properties[J].Composites Part B: Engineering, 2014, 58(3): 185-192
[25] ZHOU C Y, GAO Q, LUO W J, et al.Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash[J].Journal of the Taiwan Institute of Chemical Engineers, 2015, 52(3): 147-157
[26] LI X D, ZHAI Q Z, ZOU M Q.Optical properties of (nanometer MCM-41)-(malachite green) composite materials[J].Applied Surface Science, 2010, 257(3): 1134-1140
[27] BAUR G B, YURANOV I, KIWI-MINSKER L.Activated carbon fibers modified by metal oxide as effective structured adsorbents for acetaldehyde[J].Catalysis Today, 2015, 249: 252-258
[28] KLETT C, DUTEN X, TIENG S, et al.Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: Role of the adsorption process[J].Journal of Hazardous Materials, 2014, 279: 356-364
[29] WANG H Y, SUN Y F, ZHU T L, et al.Adsorption of acetaldehyde onto carbide-derived carbon modified by oxidation[J].Chemical Engineering Journal, 2015, 273: 580-587
[30] LIU J Y, ZHAO M, XU C H, et al.Ultrasonic-assisted fabrication and catalytic activity of CeZrAl oxide-supported Pd for the purification of gasohol exhaust[J].Chinese



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:542
HTML全文浏览数:417
PDF下载数:108
施引文献:0
出版历程

刊出日期:2018-09-20




-->








Pd/MCM-41对乙醇汽油车尾气排放乙醛的吸附和催化氧化性能

李俊洁1,,
刘建英1,
胡晓东1,
徐成华1,
刘盛余1,
张雪乔1,
魏荣1
1.成都信息工程大学资源环境学院,成都 610225
基金项目: 国家自然科学基金资助项目(51608061) 四川省科技厅资助项目(2015JY0113) 成都信息工程大学资助项目(J201712)
关键词: Pd/MCM-41/
乙醛/
乙醇汽油/
吸附/
催化氧化
摘要:以正硅酸乙酯 (TEOS)为硅源,十六烷基三甲基溴化铵 (CTAB)为模板剂,采用水热合成法制备了MCM-41分子筛,以其为载体采用等体积浸渍法制得Pd/MCM-41催化剂,并用于乙醇汽油车冷启动排放乙醛的净化。采用氮气吸附脱附法(BET)、X射线衍射仪(XRD)、透射电子显微镜(TEM)对Pd/MCM-41理化性能进行表征,并用原位傅里叶变换红外技术研究了Pd/MCM-41在空气氛围下对乙醛的净化机理。结果表明:Pd/MCM-41具有规整的六方孔道、孔径分布均匀、比表面积大的特点;常温下,Pd/MCM-41催化剂可快速吸附乙醛,吸附容量可达105 mg·g-1,而吸附在Pd/MCM-41上的乙醛在180~220 ℃之间即可发生氧化而生成CO2和乙酸。

English Abstract






--> --> --> 参考文献 (30)
相关话题/成都信息工程大学 资源 理化 环境学院 乙醛