删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

城镇污水处理厂污泥泥质监测及资源化风险评价

本站小编 Free考研考试/2021-12-31

中文关键词城镇污水污泥泥质重金属潜在生态风险频数分布 英文关键词urban sewagesludge characteristicsheavy metalspotential ecological riskfrequency distribution
作者单位E-mail
李娟北京市生态环境监测中心, 北京 100048lijuan19900801@163.com
李金香北京市生态环境监测中心, 北京 100048jinxiangli@hotmail.com
杨妍妍北京市生态环境监测中心, 北京 100048
中文摘要 在城市固废管理中,污水处理厂污泥科学合理地处置利用问题越来越重要,阐明城镇污水处理厂污泥的污染状况和化学性质,评价城市污泥污染物的生态风险和危害,可以为污泥的资源化利用提供依据.对某市49家城镇污水处理厂污泥泥质(pH、含水率、Cd、Cr、Cu、Zn、Pb、As、Hg、Ni、矿物油、挥发酚、多环芳烃、有机质和氮磷钾)开展监测,分析其重金属和有机污染物状况、污染物含量频数分布以及污泥养分变化特征,并应用内梅罗指数法和Hakanson潜在生态危害指数评估污泥在农用过程中重金属的潜在生态风险和危害.结果表明,在污泥pH总体呈现中性、且高含水率的状况下,重金属含量高低为:Zn > Cu > Cr > Pb > Ni > As > Hg > Cd,其中,Cd、Pb、Hg、Ni和As为重金属来源第一主成分(生活清洁和医疗)的主要载荷因素;在所有样品中,8项重金属频数分布最集中的含量分别为:38.9~1380.0、62.6~182.7、63.6~181.3、0.0~97.8、19.3~68.4、0.8~29.2、0.3~8.7和0.01~0.96 mg·kg-1;矿物油、挥发酚和多环芳烃含量最集中的频数分布占比分别为:87.0%、87.9%和77.6%;污泥养分含量高于我国平均水平,有机质含量为农家粪肥(猪粪、牛粪和鸡粪)的67.4%、75.9%和92.5%,氮磷钾含量与农家粪肥相差不大.内梅罗指数和Hakanson生态危害指数显示某市城镇污水处理厂污泥存在一定的生态风险;此外,在符合污泥农用标准的44家城镇污水处理厂中,共有4家污水处理厂污泥属于重度污染或强生态危害.综上所述,某市污水处理厂污泥农用存在一定的潜在生态风险,施用前需降低其重金属含量,在污泥符合农用标准的前提下,还需综合生态风险评价,合理选择污泥资源化方式. 英文摘要 In urban solid waste management, the scientific and reasonable disposal and utilization of sewage sludge is becoming more and more important. It can be said that the pollution status and chemical properties of sewage sludge in urban sewage treatment plants can provide a basis for the scientific disposal and utilization of sludge. In this study, the characteristics of pH, moisture content, Cd, Cr, Cu, Zn, Pb, As, Hg, Ni, mineral oil, volatile phenol, PAHs, organic matter, nitrogen, phosphorus, and potassium were evaluated in sewage sludge collected from 49 sewage treatment plants in a certain city. The pollution status of heavy metals and organic pollutants, the frequency distribution of pollutant concentrations, and changes in the nutrient content were analyzed. The Nemero index and Hakanson potential ecological hazard index were used to assess the potential ecological risks of heavy metals in the agricultural utilization process of sludge. The results showed that under the condition of neutral pH values and high moisture content, the order of heavy metal content was Zn > Cu > Cr > Pb > Ni > As > Hg > Cd. The principal component analysis (PCA) results indicated that Cd, Pb, Hg, Ni, and As constituted the main load factors of the first main component of heavy metal sources. The most concentrated contents of 8 heavy metal frequency distributions among the 49 samples were 38.9-1380.0, 62.6-182.7, 63.6-181.3, 0.0-97.8, 19.3-68.4, 0.8-29.2, 0.3-8.7, and 0.01-0.96 mg·kg-1. In addition, the most concentrated frequency distribution of mineral oil, volatile phenol, and PAH concentration were 87.0%, 87.9%, and 77.6%, respectively. Moreover, the nutrient content of sludge was higher than the average level in China, and the organic matter content was 67.4%, 75.9%, and 92.5% of that of pig manure, cow dung, and chicken manure, while the content of nitrogen, phosphorus, and potassium was not very different. The Nemero index and Hakanson ecological hazard index results showed that the sludge of urban sewage treatment plant in the city has certain ecological risks. However, four sewage treatment plants were heavily polluted or highly ecologically hazardous among the 44 plants in this study, which were in line with the Standards for pollutant control of agricultural sludge. In summary, there are certain potential ecological risks for the agricultural utilization of sludge in the city, and it is necessary to reduce the heavy metal content before resourcing. More importantly, on the premise that the sludge meets the agricultural standards, a comprehensive ecological risk assessment is required to select a reasonable sludge recycling method.

PDF全文下载地址:

https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20210438&flag=1&journal_id=hjkx&year_id=2021

相关话题/生态 北京 中文 城市 资源