删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

高砷烧渣酸浸-深度还原-磁选提铁除杂

本站小编 Free考研考试/2021-12-31

李然1,,
潘洁1,
朱晓敏1,
柏少军2
1.昆明冶金高等专科学校环境工程学院,昆明 650033
2.昆明理工大学国土资源工程学院,昆明 650093



Iron-increase and impurity-removal for pyrite cinder with high content of arsenic by acid leaching-deep reduction-magnetic separation processing

LI Ran1,,
PAN Jie1,
ZHU Xiaomin1,
BAI Shaojun2
1.Faculty of Environmental Engineering, Kunming Metallurgy College, Kunming 650033, China
2.Faculty of Land Resources Engineering, Kunming University of Science & Technology, Kunming 650093, China

-->

摘要
HTML全文
(0)(0)
参考文献(23)
相关文章
施引文献
资源附件(0)
访问统计

摘要:对云南某高砷烧渣进行了酸浸-深度还原-磁选实验研究,采用HSC、SEM-EDS、XRD等检测技术分析了提铁脱杂的机理。研究结果表明,原料中Fe品位为 57.35%,含As高达2.78%,As主要以金属砷酸盐形式赋存,Cu和Zn的品位分别为0.52%和0.57%。在浸出温度60 °C,硫酸质量分数25%的条件下,浸出作业As脱除率为86.43%。浸出渣碳热深度还原最佳实验条件为:还原温度1 050 °C,还原时间120 min,煤粉质量分数30% ,砷的作业挥发率78.23%。焙烧样品经磁选后,最终获得铁品位71.19%,总回收率约92%,含As 0.08%, 含Cu 0.29%,含Zn 0.10%的铁精矿。基础理论分析及样品特性研究结果表明,酸浸促使难溶性金属砷酸盐中As转变为易溶性的H3AsO4,碳热深度还原实现了氧化铁矿物向金属铁相的转变以及As的进一步脱除。研究为类似硫酸烧渣的综合利用提供了一定的理论基础和技术支撑。
关键词: 高砷烧渣/
酸浸/
深度还原/
磁选/
综合利用

Abstract:The processing consisted of acid leaching-deep reduction-magnetic separation was employed for the iron-increase and impurity-removal of pyrite cinder with high content of arsenic. Additional, the mechanism of iron upgrading and impurity removal was investigated by HSC, SEM-EDS and XRD analysis technologies. The results indicated that the raw material contained TFe 57.35%, As 2.78%, Cu 0.52% and Zn 0.57%. The harmful element of arsenic was mainly in the form of metal-arsenate. The arsenic removal rate was 86.43% after the treatment of acid leaching with a leaching temperature of 60 °C and a sulfuric acid mass fraction of 25%. After the treatment of deep carbothermic reduction under the optimum experimental conditions (reduction temperature of 1 050 °C, reduction time of 120 min and pulverized mass fraction of 30%), the arsenic volatility rate reached 78.23%. Then, the reduction samples were conducted by magnetic separation processing. Finally, a qualified iron concentrate with TFe 71.19% and about 92% of iron recovery was obtained, in which the contents of arsenic, copper and zinc were 0.08%, 0.29% and 0.10%, respectively. The results of theoretical analysis and samples characteristic showed that the insolubility metal-arsenates were transformed into solubility arsenic acid during the acid leaching processing, resulting in the removal of arsenic. Meanwhile, the iron oxide minerals were transformed into metallic iron phase during the deep carbothermic reduction processing. Thus, the present paper could provide a theoretical basis and technical support for the comprehensive utilization of similar pyrite cinders.
Key words:pyrite cinder with high content of arsenic/
acid leaching/
deep carbothermic reduction/
magnetic separation/
comprehensive utilization.

加载中
[1] 罗文, 许承风.硫酸烧渣综合利用新途径探索[J].安徽化工,2004,30(6):42-43
[2] 何桂春, 吴艺鹏, 冯金妮. 含金硫精矿焙烧除砷选铁-硫脲法提金实验研究[J]. 矿冶工程,2012,32(5):62-67
[3] 刘心中, 杨新春, 董风芝, 等.硫酸烧渣综合利用[J].金属矿山,2002,31(9):51-54
[4] 刘闯, 蒋其胜, 王志勇, 等.论硫铁矿烧渣的再生与利用[J]. 安徽地质,2000,10(4):290-293
[5] 代献仁. 离析法回收硫酸烧渣中有价元素的实验研究[J]. 中国有色冶金,2017,46(1):59-64
[6] 徐杰, 李书营, 王瑞. 硫铁矿烧渣的综合利用研究[J]. 环境科学与管理,2010,35(2):153-157
[7] 阮书锋, 桑胜华, 李云, 等. 含金银硫酸烧渣综合利用研究: 选择性脱铜[J]. 矿冶,2017,26(3):46-49
[8] 左豪恩, 温建康, 崔兴兰, 等. 硫酸渣脱硫制备高品质铁精矿研究进展[J]. 工程科学学报,2018,40(1):1-8
[9] 郑雅杰, 符丽纯. 硫铁矿烧渣水热法制备氧化铁[J]. 中南大学学报(自然科学版),2007,38(4):674-680
[10] 曾志飞, 李茂林. 从硫铁矿烧渣中回收铁的实验研究[J]. 矿冶工程,2006,26(5):29-32
[11] 杨声海, 唐谟堂, 张凯, 等. 高硅硫铁矿烧渣浸出过程动力学机理[J]. 中南大学学报( 自然科学版),2001,32(6):583-586
[12] TUMEN F, BAILEY N T.Recovery of metal values from copper smelter slags by roasting with pyrite[J].Hydrometallurgy,1990,25 3):317-328 10.1016/0304-386X(90)90047-6
[13] WEI J T, YAN G Y, GUO B K.Extracting gold from pyrite roster cinder by ultra-fine-grinding and resin in pulp [J].Journal of Central South University of Technology,2003,10(1):27-31 10.1007/s11771-003-0065-z
[14] 常耀超, 徐晓辉, 王云. 硫铁矿烧渣氯化焙烧扩大实验研究[J]. 有色金属( 冶炼部分),2013,10(10):1-3
[15] 赵沛,郭培民,张殿伟.低温非平衡条件下氧化铁还原顺序[J].钢铁,2006(8):12-15
[16] 黄柱成,蔡凌波,张元波,等,Na2CO3和CaF2强化赤泥铁氧化物还原研究[J].中南大学学报(自然科学版),2010,4l(3):838-844
[17] YU W, SUN T C, KOU J, et al.The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets[J].Iron and Steel Institute of Japan International,2013,53:427-433 10.2355/isijinternational.53.427
[18] YU Y, QI, C.Magnetizing roasting mechanism and effective ore dressing process for oolitic hematite ore[J].Journal of Wuhan University of Technology,2011, 26:176-181 10.1007/s11595-011-0192-6
[19] BAI S J, LI C L, FU X Y, et al.Novel method for iron recovery from hazardous iron ore tailing with induced carbothermic reduction-magnetic flocculation separation[J].Clean Technologies and Environmental Policy,2018,20(4):825-837 10.1007/s10098 018-1501-y
[20] LEI C, YAN B, CHEN T, et al.Recovery of metals from the roasted lead-zinc tailings by magnetizing roasting followed by magnetic separation[J].Journal of Cleaner Production,2017,158(1):73-80 10.1016/j.jclepro.2017.04.164
[21] 成日金,倪红卫,张华,等. 含砷铁矿石烧结及除尘灰焙烧脱砷热力学[J].钢铁,2017,56(2):26-33
[22] 郑海雷,文书明,郑永兴. 高砷含金硫精矿的深度精选及脱砷脱硫实验研究[J].矿产保护和利用,2011(2):17-20
[23] 朱德庆,春铁军,潘建,等. 钢铁厂含锌粉尘球团金属化烧结焙烧脱锌砷研究[C]// 中国金属学会.中国金属学会2012年非高炉炼铁学术年会论文集.沈阳,2013:275-279



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:674
HTML全文浏览数:550
PDF下载数:82
施引文献:0
出版历程

刊出日期:2018-09-20




-->








高砷烧渣酸浸-深度还原-磁选提铁除杂

李然1,,
潘洁1,
朱晓敏1,
柏少军2
1.昆明冶金高等专科学校环境工程学院,昆明 650033
2.昆明理工大学国土资源工程学院,昆明 650093
基金项目:
关键词: 高砷烧渣/
酸浸/
深度还原/
磁选/
综合利用
摘要:对云南某高砷烧渣进行了酸浸-深度还原-磁选实验研究,采用HSC、SEM-EDS、XRD等检测技术分析了提铁脱杂的机理。研究结果表明,原料中Fe品位为 57.35%,含As高达2.78%,As主要以金属砷酸盐形式赋存,Cu和Zn的品位分别为0.52%和0.57%。在浸出温度60 °C,硫酸质量分数25%的条件下,浸出作业As脱除率为86.43%。浸出渣碳热深度还原最佳实验条件为:还原温度1 050 °C,还原时间120 min,煤粉质量分数30% ,砷的作业挥发率78.23%。焙烧样品经磁选后,最终获得铁品位71.19%,总回收率约92%,含As 0.08%, 含Cu 0.29%,含Zn 0.10%的铁精矿。基础理论分析及样品特性研究结果表明,酸浸促使难溶性金属砷酸盐中As转变为易溶性的H3AsO4,碳热深度还原实现了氧化铁矿物向金属铁相的转变以及As的进一步脱除。研究为类似硫酸烧渣的综合利用提供了一定的理论基础和技术支撑。

English Abstract






--> --> --> 参考文献 (23)
相关话题/金属 质量 分数 冶金 工程