删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国北方某市城市绿地土壤重金属空间分布特征、污染评价及来源解析

本站小编 Free考研考试/2021-12-31

中文关键词城市绿地土壤重金属监测污染评价来源解析 英文关键词urban green spacesoilheavy metalmonitorcontamination assessmentsource apportionment 中文摘要 为掌握北方某市城市中心区绿地土壤环境状况,对其中心区城市绿地土壤重金属(Cd、Hg、As、Pb、Cu、Cr、Zn和Ni)的空间分布、来源及污染现状进行分析和评价.结果表明,该市中心区的城市绿地土壤环境质量整体良好.土壤重金属Cd、Hg、As、Pb、Cr、Cu、Zn和Ni的含量均值分别为:0.172、0.202、9.02、34.7、57.0、31.2、85.7以及26.3mg·kg-1.Cd、Hg、Pb和Zn平均含量均超过同为北方地区的京津唐土壤背景值.所有点位各项重金属含量均不超过国家建设用地土壤污染风险管控标准的污染风险筛选值.空间上,As、Cr和Ni含量高值出现于西北部;Cd和Zn含量高值出现于东北部;Hg、Pb和Cu的高值区集中在城市核心区.对于不同土地利用类型土壤,Cd、Zn和Ni在企业绿地土壤中含量显著高于其他元素,Hg、Pb和Cu等在公园绿地和居民绿地土壤中含量较高.土壤污染评价结果表明,97.2%的样点内梅罗综合污染指数小于1,为清洁土壤;所有样点潜在生态风险指数均小于80,属轻微生态风险水平.多元统计分析表明,Cu、Pb和Hg为人为源,与古建筑保护的彩绘以及对古树保护采用杀虫剂有关;Cr为自然源,可能来源于土壤母质和地球化学过程;Cd、Zn、Ni和As为混合来源,部分可能来源于人类活动和工业生产,另一部分来源于岩石的风化和土壤母质等.利用受体模型对超标元素进行来源定量解析,Cd按来源贡献率高低依次为源2(占46.1%)、源3(占33.1%)、源1(17.7%)和其他源(占3.1%);Cu源贡献率主要为源1(占93.0%);Zn源贡献率依次为源1(占52.4%)、源3(占24.2%)、源2(占20.0%)以及其他源(占3.4%);Ni源贡献率依次为源1(占56.3%)、源2(占37.8%)以及源3(占5.8%).推测源1和源3为人为源,源2为自然来源. 英文摘要 To study the condition of urban green space soils in the central parts of a city in North China, the spatial distribution, sources, and pollution levels of heavy metals (Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni) within green space soils in the central urban districts of the city were investigated. The results showed that the soil quality was high overall. The mean concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni were 0.172, 0.202, 9.02, 34.7, 57.0, 31.2, 85.7, and 26.3 mg·kg-1, respectively. The mean concentrations of Cd, Hg, Pb, and Zn in urban soils exceeded the background value of the Beijing-Tianjin-Tangshan region. All of the samples' heavy metal concentrations were lower than the risk screening values for soil contamination of development land in the national soil environment quality standards. With respect to the spatial distribution, the concentrations of As, Cr, and Ni were higher in the northwest of the study area, the concentrations of Cd and Zn were higher in the northeast, and the concentrations of Hg, Pb, and Cu were higher in the urban core area. As for the different land use types of the soils, the concentrations of Cd, Zn, and Ni were higher in the enterprise soils, while the concentrations of Hg, Pb, and Cu were higher in park and residential soils. Assessments of soil quality showed that 97.2% of soil samples' Nemerow integrated indices were less than 1, indicating that the soils were clean. Indices of potential ecological risk for all soil samples were less than 80, indicating that they posed a slight ecological risk. Multivariate statistical analysis (correlation and principle component analyses) showed that Cu, Pb, and Hg may originate from an anthropogenic source via the painting of ancient buildings and pesticides used to protect ancient trees. Chromium may originate from natural sources via geochemical activity and soil parent material; Cr, Zn, Ni, and As were derived from mixed sources through human and geochemical activities. The receptor model was used for identification and apportionment of pollution sources of elements over the standard. The contribution rates of sources were as follows:source 2(46.1%), source 3(33.1%), source 1(17.7%), and others (3.1%) for Cd, source 1(93.0%) for Cu, source 1(52.4%), source 3(24.2%), source 2(20.0%), and others (3.4%) for Zn, source 1(56.3%), source 2(37.8%), and source 3(5.8%) for Ni. Sources 1 and 3 were anthropogenic, while source 2 was natural.

PDF全文下载地址:

https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20201236&flag=1&journal_id=hjkx&year_id=2020

相关话题/土壤 北京 城市 污染 中文

娑撯偓閺夘垰銈堕懠鍓佹畱闁藉崬姘ㄩ崣顖欎簰娑旀澘鍩岄懓鍐埡娑撴挷绗熺拠鎹愮カ閺傛瑱绱�
2娑撳洨顫掗懓鍐埡閻㈤潧鐡欐稊锔肩礄妫版ê绨遍妴浣筋潒妫版垯鈧礁鍙忔總妤勭カ閺傛瑱绱氶崣濠傚坊楠炲婀℃0姗堢礉濞戠數娲�547閹碘偓闂勩垺鐗�4娑撳洣缍戞稉顏団偓鍐埡閼板啫宕ユ稉鎾茬瑹缁夋垹娲伴妴浣解偓鍐埡閸忣剙鍙$拠鎾呯礄閺€鎸庝笉閼昏精顕㈤弫鏉款劅閿涘鈧拷40缁夊秳绗撴稉姘鳖敋婢诡偓绱欓柌鎴g€虹涵鏇烇紜閵嗕府BA閵嗕礁娴楅梽鍛櫌閸旓紕顢氭竟顐犫偓浣规煀闂傝绱堕幘顓狀敋婢诡偁鈧胶銇炴导姘紣娴f粎顢氭竟顐ょ搼閿涘鈧拷28缁鎮撶粵澶婎劅閸旀稓鏁电涵鏇氱瑩娑撴哎鈧拷1130缁夊秶绮¢崗鍛婃殌閺夋劑鈧拷