删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

海绵城市地块汇水区颗粒污染物的传输

本站小编 Free考研考试/2021-12-31

中文关键词地块汇水区低影响开发街尘降雨径流粒径分布 英文关键词urban parcel-based catchmentlow-impact development (LID)street dustrainfall runoffparticle size distribution
作者单位E-mail
李佳青岛大学环境科学与工程学院, 青岛 266071
中国科学院生态环境研究中心, 城市与区域生态国家重点实验室, 北京 100085
li_jia12@163.com
谢文霞青岛大学环境科学与工程学院, 青岛 266071
姜智绘青岛大学环境科学与工程学院, 青岛 266071
中国科学院生态环境研究中心, 城市与区域生态国家重点实验室, 北京 100085
单溪环青岛大学环境科学与工程学院, 青岛 266071
中国科学院生态环境研究中心, 城市与区域生态国家重点实验室, 北京 100085
廖云杰中国科学院生态环境研究中心, 城市与区域生态国家重点实验室, 北京 100085
赵洪涛中国科学院生态环境研究中心, 城市与区域生态国家重点实验室, 北京 100085htzhao@rcees.ac.cn
李叙勇中国科学院生态环境研究中心, 城市与区域生态国家重点实验室, 北京 100085
中文摘要 目前我国海绵工程建设多集中在地块汇水区单元内开展,通过多个低影响开发(LID)设施协同完成地表径流水质水量的调控,但基于地块汇水区尺度下城市面源污染的产生和控制效果鲜有报道.本研究比较分析了不同硬化率地块汇水单元内的面源颗粒污染物晴天累积、降雨冲刷、地表径流及径流输出负荷状况.结果表明,地块汇水单元内硬质路面是面源颗粒污染物贡献的最主要的下垫面类型,中硬化率(61.1%)地块和高硬化率(73.6%)地块路面街尘累积量分别约占汇水区单元的88.4%(2.22~12.51 g ·m-2)和90.1%(4.99~33.43 g ·m-2),对径流SS的输出贡献比率分别约为91.7%(0.97~7.34 g ·m-2)和90.5%(0.92~18.77 g ·m-2),降雨径流SS污染负荷占比分别约为95.2%和83.1%,经LID设施处理后输出径流污染负荷约为地表径流的24.0%和40.2%.硬质路面的街尘晴天累积及降雨冲刷以>150 μm为主,地表径流及输出径流则以<50 μm粒径段为主,同时地块不透水比例的增加,细粒径(<105 μm)颗粒物的累积及冲刷分布增大(24.4%和106.4%),而粒径<50 μm的颗粒物在路面径流中的分布减小(12.4%).屋面的街尘累积、冲刷及降雨径流的粒径分布状况与硬质路面大致相似,但中硬化率地块(>1000 μm)和高硬化率地块(250~450 μm、<45 μm)在3个粒径段范围的颗粒物累积和冲刷相较于路面街尘粒径分布明显增加(>1000 μm:58.1%和108.5%;250~450 μm:72.9%和41.8%;<45 μm:59.2%和64.8%).以上结果揭示了颗粒污染物在地块汇水区尺度下的污染全过程(累积-冲刷-输出)分布及LID设施对地块整体SS污染负荷的控制效果,可为地块汇水单元内LID设施工程绩效的科学评估提供重要参考. 英文摘要 Most sponge city constructions in China are carried out in urban parcel-based catchments, and the quality and quantity of surface runoff can be controlled by several low impact development (LID) facilities. However, there are few reports on the generation and control of urban diffuse pollution. In this study, two areas with different hardening rates were compared to analyze the load conditions during the accumulation-wash-off-transport process of particulate pollutants. The results showed that the road surface in the catchment was the main underlying surface that the particulate pollutants contributed to. The road dust accumulation in the medium hardening rate (61.1%) and high hardening rate (73.6%) plots accounted for 88.4% (2.22-12.51 g ·m-2) and 90.1% (4.99-33.43 g ·m-2) of the catchment area unit, respectively. The contribution to the suspended solids (SS) load of runoff was 91.7% (0.97-7.34 g ·m-2) and 90.5% (0.92-18.77 g ·m-2), respectively. The SS load of road runoff accounted for approximately 95.2% and 83.1%, respectively. The pollution load (SS) after treatment by the LID facilities was approximately 24.0% and 40.2% of the surface runoff, respectively. The particle size distribution of road dust during the accumulation and wash-off processes was>150 μm, while that in surface and output runoff was <50 μm. With the increase in the impervious area, the distribution of finer particles (<105 μm) in the process of accumulation and wash-off increased (24.4%, 106.4%), while the distribution of particles <50 μm in road runoff decreased (12.4%). The particle size distribution of the accumulated, washed dust, and the rain runoff on the roof were roughly similar to those on the road. However, compared to the particle size distribution of road dust, in the accumulation and wash-off processes, the coarser particles (>1000 μm) of the medium hardening rate plot and the particles of size 250-450 μm and <45 μm of the high hardening rate plot increased significantly (>1000 μm: 58.1%, 108.5%; 250-450 μm: 72.9%, 41.8%; <45 μm: 59.2%, 64.8%). The results revealed the entire distribution process (accumulation—wash-off—transport) of particulate pollutants and the effect of LID facilities on the total SS pollution load of the catchment, which can provide an important reference for the scientific assessment of the project performance of LID installation in urban parcel-based catchments.

PDF全文下载地址:

https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20200928&flag=1&journal_id=hjkx&year_id=2020

相关话题/城市 北京 实验室 生态 中国科学院