摘要:通过树木年代学方法,测定了毛乌素和塞罕坝相同密度樟子松(Pinus sylvestris var.mongolica)全木(Ringwood,RW)、早材(Earlywood,EW)和晚材(Latewood,LW)宽度,计算胸高断面积增量(Basal area increment,BAI),并建立了樟子松年轮宽度年表,分析其对气候响应的差异。结果显示,毛乌素(Mu Us)樟子松轮宽随树龄呈"升-降"的曲线变化,塞罕坝(Saihanba)呈线性下降,两地樟子松BAI变化相似,呈"升-降"的曲线变化,EW占RW的65%-70%,表明EW对RW贡献较大。生长期间,毛乌素樟子松早晚材比例保持平稳,塞罕坝EW/RW值下降,LW/RW值上升,两地干旱事件均使LW/RW值下降,EW/RW值上升。差值年表(Residual chronology,RES)相关性分析显示,毛乌素樟子松径向生长主要与4、7月平均降雨,7月标准化降水蒸散发指数(Standardized precipitation evapotranspiration index,SPEI),3、8月平均温度及上年12月和当年3月最低温度呈正相关关系,与上年11月和当年6月最高温度呈负相关关系。塞罕坝樟子松径向生长主要与7、8月平均降雨、SPEI和最低温度呈正相关关系,与当年3、5月最高温度呈负相关关系。结构方程模型表明,毛乌素年平均温度和年SPEI对樟子松RW产生极显著负效应,年平均降雨对RW产生显著正效应,年平均降雨对EW产生极显著正效应,年最低温度和年平均温度分别对LW产生极显著正/负效应。塞罕坝樟子松径向生长对其年气象因子响应与毛乌素相似,但有部分差别,塞罕坝年平均降雨对LW产生极显著负效应,但对EW未达到显著性水平,且年SPEI对塞罕坝樟子松RW和EW产生的干旱胁迫效应明显小于毛乌素。
Abstract:A tree-ring width chronology of Mongolian pine (Pinus sylvestris var. mongolica) in northern China was established to analyze the tree growth response to climatic variation. The widths of Ringwood (RW), Earlywood (EW), and Latewood (LW) of Mongolian pine trees with the same wood density growing at Mu Us Desert and Saihanba National Forest Park were measured from tree-ring chronologies. Differences in the response of Mongolian pine trees to climatic variation were analyzed by measuring basal area increment. The results showed that the tree-ring width of Mongolian pine at Mu Us Desert presented a trend to initially increase and thereafter decrease with the increase in tree age, whereas at Saihanba tree-ring width showed a linear decreasing trend with tree age increase. The variation in basal area increment of Mongolian pine was similar to that of tree-ring width at the two study sites. The proportion of EW (as a percentage of RW) ranged from 65% to 70% at the two study areas, which indicated that the growth of EW made a greater contribution to RW than that conferred by LW growth. During the growth period, the relative percentages of EW and LW in the RW of Mongolian pine at Mu Us Desert showed only slight variation, whereas at Saihanba the percentage of EW decreased and the percentage of LW increased in the tree RW. The percentage of LW in the RW decreased during three drought events at Mu Us Desert. Correlation analysis showed that the radial growth of Mongolian pine at Mu Us Desert was positively correlated with the rainfall in April and July, the standardized precision evaporation index (SPEI) in July, the average temperature in December of the previous year and in March of the current year, and the minimum temperature in March and August, and was negatively correlated with the maximum temperature in November and June of the previous year. The radial growth of Mongolian pine at Saihanba was positively correlated with the rainfall in July and August, the SPEI, and the minimum temperature, and was negatively correlated with the maximum temperature in March and May of the current year. Structural equation modeling analysis showed that the annual average temperature and annual SPEI at Mu Us Desert had significantly negative effects on RW growth of Mongolian pine, the annual average rainfall had significantly positive effects on both EW and RW growth, and the annual minimum temperature and the annual average temperature had significantly positive and negative effects on LW growth, respectively. The responses of radial growth of Mongolian pine to the annually meteorological variables at Saihanba were generally similar to those observed at Mu Us Desert, but some differences were noted. The annual average rainfall had a strongly significant negative effect on LW of Saihanba, whereas the impact on EW did not attain significance. The drought stress effect of annual SPEI on RW and EW of Mongolian pine at Saihanba was significantly smaller than the impacts on RW and EW at Mu Us Desert.
PDF全文下载地址:
https://www.ecologica.cn/stxb/article/pdf/stxb201911152437
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
中国北部不同地点樟子松人工林径向生长对气候响应的差异
本站小编 Free考研考试/2021-12-31
相关话题/气象 计算 比例 结构 负效应
基于地面LiDAR数据的塔里木河下游胡杨林结构参数反演
摘要:以塔里木河下游天然胡杨林为研究对象,利用RieglVZ-1000型地面激光扫描仪(TerrestrialLaserScanning,TLS)获取离河道不同距离的8个样方内513棵胡杨的三维点云数据,通过建立冠层高度模型、Hough变换等方法获取单木株数和结构参数,并与传统的每木检尺实测数据和无 ...中科院生态环境研究中心 本站小编 Free考研考试 2021-12-31不同类型高寒草地群落结构与生产对施氮的响应及其敏感性
摘要:大气氮沉降增加被认为是目前重要的环境问题,会引起生物多样性的丧失和生态系统稳定性的降低。但作为草地改良的管理措施,养分添加被广泛应用于退化草地的恢复。但由于不同类型草地所处气候与群落组成的差异,对氮输入的响应可能不同。通过在藏北高原高寒草甸与高寒草甸草原设定长期氮添加梯度试验(对照,25,50 ...中科院生态环境研究中心 本站小编 Free考研考试 2021-12-31西南喀斯特峰丛洼地木本植物群落结构与多样性变化
摘要:为了阐明喀斯特峰丛洼地植物群落结构和物种多样性特征及其变化规律,选择西南喀斯特具有代表性的灌木林、次生林和原生林3种植被类型,基于2007年、2012年、2017年3次植被的系统调查,研究了木本植物群落物种组成、群落结构和物种多样性的动态变化。研究结果表明,灌木林2007-2012年减少1个种 ...中科院生态环境研究中心 本站小编 Free考研考试 2021-12-31古大湖湿地盐碱土壤微生物群落结构及多样性分析
摘要:以黑龙江省古大湖湿地原生、林地、耕地及湖岸盐碱土壤微生物为研究对象,基于高通量测序方法,分析4种生境类型条件下土壤细菌和真菌群落结构及多样性。结合土壤理化指标,进一步分析影响微生物群落多样性的环境因子。结果表明:细菌群落中变形菌门的相对丰度值最高,真菌群落中为子囊菌门。同一生境细菌群落多样性具 ...中科院生态环境研究中心 本站小编 Free考研考试 2021-12-31短期施肥对桉树人工林土壤真菌群落结构及功能类群的影响
摘要:为探索桉树人工林土壤真菌群落对短期施肥的响应特征,本研究利用Illumina高通量测序技术和FUNGuild平台,分析短期施肥和不施肥(control,CK)处理下土壤真菌的群落结构、功能类群及其影响因子。结果表明:桉树土壤真菌群落主要由担子菌门和子囊菌门主导,分别占48.61%-46.74% ...中科院生态环境研究中心 本站小编 Free考研考试 2021-12-31中国主要农产品虚拟要素贸易网络结构特征分析
摘要:据虚拟水概念定义虚拟要素,并将其划分为虚拟资源要素和虚拟生态要素两类,选取虚拟资源要素中的耕地要素和虚拟生态要素中的化肥/农药要素为研究对象,定量分析2002-2016年以粮食贸易为载体的虚拟耕地、虚拟化肥/农药要素的贸易量,构建虚拟要素贸易网络,通过复杂网络的研究方法,结果表明:2002-2 ...中科院生态环境研究中心 本站小编 Free考研考试 2021-12-31珍稀濒危树种陆均松天然种群结构与空间分布格局
摘要:为研究陆均松(Dacrydiumpectinatum)种群生存现状及分布格局,对BWL、DLS、JFL三种不同分布区域的陆均松天然种群进行了调查,分析了其天然群落乔木层物种多样性及优势种组成、龄级结构及分布格局三个方面的空间异质性,结果表明:(1)三种陆均松天然群落乔木层物种丰富度及多样性指数 ...中科院生态环境研究中心 本站小编 Free考研考试 2021-12-31水稻土中铁氧化物对产甲烷古菌群落结构的影响
摘要:产甲烷菌广泛分布在淹水水稻土等各种厌氧环境中,在全球气候变化、碳循环和能源等领域都发挥着重要的作用。研究发现,厌氧条件下,水稻土中铁氧化物的生物还原会抑制产甲烷菌的甲烷合成作用。然而,目前关于铁氧化物对产甲烷菌群落结构的影响报道较少。通过泥浆厌氧培养实验,向采集的水稻土中添加甲酸盐作为甲烷合成 ...中科院生态环境研究中心 本站小编 Free考研考试 2021-12-31贺兰山东麓荒漠藻结皮微生物群落结构及其演替研究
摘要:以宁夏贺兰山东麓荒漠藻结皮为研究对象,对处于不同发育阶段的藻结皮中微生物群落结构及其演替进行了研究。结皮样品高通量测序结果分别得到521个16SrDNA序列操作分类单元(OTU)和64个18SrDNA序列OTU,表明藻结皮中原核微生物多样性远高于真核微生物;贺兰山东麓藻结皮中原核微生物分布于2 ...中科院生态环境研究中心 本站小编 Free考研考试 2021-12-31盐度和淹水程度对短叶茳芏枯落物分解初期DOM含量及其组成结构的影响
摘要:选取闽江河口潮汐湿地短叶茳芏枯落物为研究对象,通过设置不同盐度(0、5、10、15)和淹水程度(不浸没分解袋,淹水Ⅰ和持续浸没分解袋,淹水Ⅱ)等处理,分析枯落物分解过程中可溶性有机物(DOM)的含量及组成结构的紫外光谱、荧光光谱和红外光谱学等变化特征。研究结果表明,在181d的分解过程中,枯落 ...中科院生态环境研究中心 本站小编 Free考研考试 2021-12-31