删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

地质封存CO2泄漏对蚯蚓的毒性效应

本站小编 Free考研考试/2021-12-30

赵晨阳1,
马俊杰1,2,
薛璐1,3,
田园1,
刘丹1
1. 西北大学, 西安 710127;
2. 二氧化碳捕集与封存技术国家地方联合工程研究中心, 西安 710127;
3. 榆林学院, 榆林 719000
作者简介: 赵晨阳(1994-),女,硕士研究生,研究方向为生态影响与生态监测研究,E-mail:ZCYsuk9898@163.com.
基金项目: 国家高技术研究发展计划(863计划)资助项目(2012AA0501030);陕西省教育厅自然科学研究计划资助项目(19JK1001)


中图分类号: X171.5


Toxic Effects of CO2 Leakage from Geological Storage on Earthworms

Zhao Chenyang1,
Ma Junjie1,2,
Xue Lu1,3,
Tian Yuan1,
Liu Dan1
1. Northwest University, Xi'an 710127, China;
2. National & Local Joint Engineering Research Center of Carbon Capture and Storage Technology, Xi'an 710127, China;
3. Yulin University, Yulin 719000, China

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(47)
相关文章
施引文献
资源附件(0)
访问统计

摘要:二氧化碳捕集与封存技术(CO2 capture and storage, CCS)是当前国际上公认的CO2减排的有效措施,但封存在地下的CO2仍然因为各种不稳定因素存在泄漏风险,对土壤环境及土壤生态系统产生威胁。选择赤子爱胜蚓为研究对象,通过模拟高浓度CO2对蚯蚓形态与生理变化的影响,探究CCS泄漏所产生的土壤高浓度CO2对蚯蚓的毒性效应。研究表明,土壤高浓度CO2使蚯蚓出现生殖环带肿大、尾部串珠以及断尾等外部形态变化,皮肤和刚毛受到损伤并且表皮发生褶皱等现象;随着CO2浓度的增加以及暴露时间的延长,蚯蚓的死亡率不断增加,土壤高浓度CO2对蚯蚓的7 d和14 d半致死浓度分别为26.39%和17.78%;蚯蚓体腔细胞溶酶体中性红保留时间(NRRT)减少。因此,蚯蚓有望作为监测CO2泄漏的指示生物,NRRT可作为识别CO2泄漏的敏感指标。
关键词: CO2泄漏/
蚯蚓/
皮肤损伤/
死亡率/
中性红保留时间

Abstract:CO2 capture and storage (CCS) is currently recognized as an effective measure to reduce carbon dioxide emissions in the world. However, the CO2 stored underground has the risk of leakage because of various unstable factors, posing a threat to the soil environment and soil ecosystem. In this study, Eisenia fetida was selected as the research object. By simulating the effects of high concentration of CO2 on the morphology and physiological changes of earthworms, the toxic effects of high concentration of CO2 on the earthworms caused by CCS leakage were explored. The results showed that the high concentration of CO2 in the soil caused earthworms to have external morphological changes such as clitellum swelling, tail beading and tail breaking; skin and setae were damaged and epidermis was wrinkled. With the increase of CO2 concentration and the extension of exposure time, the mortality rate of earthworms increased continuously. The median lethal concentrations of 7 d and 14 d for high concentration CO2 soil were 26.39% and 17.78%, respectively, and the lysosomal membrane neutral red retention time (NRRT) of granulocytes decreased. Therefore, earthworms are expected to be used as indicators of monitoring CO2 leakage, and NRRT can be used as a sensitive biomarker for CO2 leakage.
Key words:CO2 leakage/
earthworm/
skin injury/
mortality rate/
NRRT.

加载中
International Energy Agency. China host high-level gathering of energy ministers and industry leaders to affirm the importance of carbon capture[EB/OL].(2017-07-15)[2019-08-03]. https://www.iea.org/newsroom/news/2017/june/iea-and-china-host-high-level-gathering-of-energyministers-and-industry-leaders.html
Leung D Y C, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable & Sustainable Energy Reviews, 2014, 39:426-443
纪翔,马欣,韩耀杰,等.箱体模拟地质封存CO2泄漏速度差异对植物的影响[J].农业工程学报, 2018, 34(2):242-247Ji X, Ma X, Han Y J, et al. Effect of different leakage speeds on plants in carbon capture and storage by simulation in chamber[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2):242-247(in Chinese)
Ha-Duong M, Loisel R. Zero is the only acceptable leakage rate for geologically stored CO2:An editorial comment[J]. Climatic Change, 2009, 93(3/4):311-317
谢健,魏宁,吴礼舟,等. CO2地质封存泄漏研究进展[J].岩土力学, 2017, 38(S1):181-188Xie J, Wei N, Wu L Z, et al.Progress in leakage study of geological CO2 storage[J]. Rock and Soil Mechanic, 2017, 38(S1):181-188(in Chinese)
Vialle S, Druhan J L, Maher K. Multi-phase flow simulation of CO 2 leakage through a fractured caprock in response to mitigation strategies[J]. International Journal of Greenhouse Gas Control, 2016, 44:11-25
任韶然,李德祥,张亮,等.地质封存过程中泄漏途径及风险分析[J].石油学报, 2014, 35(3):591-601Ren S R, Li D X, Zhang L, et al. Leakage pathways and risk analysis of carbon dioxide in geologic storage[J]. Acta Petrolei Sinica, 2014, 35(3):591-601(in Chinese)
韩耀杰,张雪艳,马欣,等.地质封存CO2泄漏对玉米根系形态的影响[J].生态学报, 2019, 39(20):7737-7744Han Y J, Zhang X Y, Ma X, et al. Impact of stored CO2 leakage on root morphology of maize[J]. Acta Ecologica Sinica, 2019, 39(20):7737-7744(in Chinese)
刘兰翠,曹东,王金南.碳捕获与封存技术潜在的环境影响及对策建议[J].气候变化研究进展, 2010, 6(4):290-295Liu L C, Cao D, Wang J N. Environmental impacts of carbon capture and storage technology and some suggestions[J]. Advances in Climate Change Research, 2010, 6(4):290-295(in Chinese)
Blackford J C, Beaubien S E, Foekema E M, et al. A guide to potential impacts of leakage from CO2 storage[R]. The Research Institute in Science of Cyber Securit, 2014
李琦,刘桂臻,蔡博峰,等.二氧化碳地质封存环境风险评估的空间范围确定方法研究[J].环境工程, 2018, 36(2):27-32Li Q, Liu G Z, Cai B F, et al. Principle and methodology of determining the spatial range of environmental risk assessment of carbon dioxide geological storage[J]. Environmental Engineering, 2018, 36(2):27-32(in Chinese)
李琦,蔡博峰,陈帆,等.二氧化碳地质封存的环境风险评价方法研究综述[J].环境工程, 2019, 37(2):13-21Li Q, Cai B F, Chen F, et al. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering, 2019, 37(2):13-21(in Chinese)
Beaubien S E, Ciotoli G, Coombs P, et al. The impact of a naturally occurring CO2 gas vent on the shallow ecosystem and soil chemistry of a Mediterranean pasture (Latera, Italy)[J]. International Journal of Greenhouse Gas Control, 2008, 2(3):373-387
Zhang X Y, Ma X, Zhao Z, et al. CO2 leakage-induced vegetation decline is primarily driven by decreased soil O 2[J]. Journal of Environmental Management, 2016, 171(2):225-230
张旺园,张绍良,陈浮,等.模拟地下CO2泄漏对土壤微生物群落的短期影响[J].农业环境科学学报, 2017, 36(6):1167-1176Zhang W Y, Zhang S L, Chen F, et al. Short-term effects of simulated underground CO2 leakage on the soil microbial community[J]. Journal of Agro-Environment Science, 2017, 36(6):1167-1176(in Chinese)
张慧慧,李春荣,邓红章,等.二氧化碳入侵土壤包气带对微生物群落的影响[J].安全与环境学报, 2016, 16(2):377-381Zhang H H, Li C R, Deng H Z, et al. Effect of carbon dioxide permeation into soil's unsaturated layer on the microbial community[J]. Journal of Safety and Environment, 2016, 16(2):377-381(in Chinese)
Arnaud C, Saint-Denis M, Norborne J F, et al. Influences of different standardized test methods on biochemical responses in the earthworm Eisenia foetida andrei[J]. Soil Biology Biochemistry, 2000, 32(1):67-73
Blouin M, Hodson M E, Delgado E A, et al. A review of earthworm impact on soil function and ecosystem services[J]. European Journal of Soil Science, 2013, 64:161-182
孔志明,臧宇,崔玉霞,等.两种新型杀虫剂在不同暴露系统对蚯蚓的急性毒性[J].生态学杂志, 1999, 18(6):20-23, 37 Kong Z M, Zang Y, Cui Y X, et al. The acute toxicity of two new types of pesticides to earthworms through different exposure systems[J]. Chinese Journal of Ecology, 1999, 18(6):20-23, 37(in Chinese)
张池,周波,吴家龙,等.蚯蚓在我国南方土壤修复中的应用[J].生物多样性, 2018, 26(10):65-76Zhang C, Zhou B, Wu J L, et al. Application of earthworms on soil remediation in southern China[J]. Biodiversity Science, 2018, 26(10):65-76(in Chinese)
Lavelle P, Spain A V. Soil Ecology[M]. Dordrecht:Kluwer Academic Publishers, 2010:285-291
Blouin M, Hodson M E, Delgado E A, et al. A review of earthworm impact on soil function and ecosystem services[J]. European Journal of Soil Science, 2013, 64(2):161-182
Patrick L, Alister V S. Soil Ecology[M]. New York:Kluwer Academic Publishers, 2003:288-290
关笑坤.二氧化碳在土壤包气带中的运移规律及对环境影响研究[D].西安:长安大学, 2014:14-31 Guan X K.Carbon dioxide transport in the unsaturated soil and its environmental impact[D]. Xi'an:Chang'an University, 2014:14-31(in Chinese)
The Organization for Economic Co-operation and Development (OECD). No. 207:Earthworm acute toxicity tests. OECD guideline for testing of chemicals[S]. Paris:OECD, 1984
谢显传.土壤中十溴联苯醚(BDe-209)对赤子爱胜蚓(Eisenia fetida)和黑麦草(Lolium perenne)的生物有效性及其生物毒性效应[D].南京:南京大学, 2010:71-73 Xie X C. Bioavailability and biological toxicity effects ofBDe-209 in soil on Eisenia fetida and Lolium perenne[D]. Nanjing:Nanjing University, 2010:71-73(in Chinese)
Maboeta M S, Reinecke S A, Reinecke A J. The relationship between lysosomal biomarker and organismal responses in an acute toxicity test with Eisenia fetida (Oligochaeta) exposed to the fungicide copper oxychloride[J]. Environmental Research, 2004, 96(1):95-101
Samal S, Mishra C S K, Sahoo S. Setal-epidermal, muscular and enzymatic anomalies induced by certain agrochemicals in the earthworm Eudrilus eugeniae (Kinberg)[J]. Environmental Science and Pollution Research, 2019, 26(8):8039-8049
Vijaya T M, Middha S K, Usha T, et al. Morphological and histological studies on the vermicomposting Indian earthworm Eudrilus eugeniae[J]. World Journal of Zoology, 2012, 7(2):165-170
张丙华,张倩,耿春香,等.地质封存CO2泄露对土壤理化性质的影响[J].广州化工, 2016, 44(7):156-159Zhang B H, Zhang Q, Geng C X, et al. Influence on physical and chemical properties of soil for the leakage of carbon dioxide during geological storage[J]. Guangzhou Chemical Industry, 2016, 44(7):156-159(in Chinese)
刘馥雯,罗启仕,王漫莉,等.铬污染土壤稳定化处理对蚯蚓的毒性效应[J].环境科学学报, 2019, 39(3):952-957Liu F W, Luo Q S, Wang M L, et al. The biotoxicity effect on earthworms by stabilization treatment of Cr-contaminated soil[J]. Acta Scientiae Circumstantiae, 2019, 39(3):952-957(in Chinese)
Nusair S D, Zarour Y S A, Altarifi A A, et al. Effects of dibenzo-p-dioxins/dibenzofurans on acetylcholinesterase activity and histopathology of the body wall of earthworm Eisenia andrei:A potential biomarker for ecotoxicity monitoring[J]. Water, Air & Soil Pollution, 2017, 228(7):266
University of Wisconsin-Madison. Life of an earthworm[EB/OL].[2019-11-03]. https://journeynorth.org/tm/worm/WormLife.html
王笑,王帅,滕明姣,等.两种代表性蚯蚓对设施菜地土壤微生物群落结构及理化性质的影响[J].生态学报, 2017, 37(15):5146-5156Wang X, Wang S, Teng M J, et al. Impacts of two typical earthworms on soil microbial community structure and physicochemical properties in a greenhouse vegetable field[J]. Acta Ecologica Sinica, 2017, 37(15):5146-5156(in Chinese)
Pierce S, Sjögersten S. Effects of below ground CO2 emissions on plant and microbial communities[J]. Plant and Soil, 2009, 325(1-2):197-205
Zhao X H, Deng H Z, Wang W K, et al. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet plateau[J]. Scientific Reports, 2017, 7(1):3001
Mauvezin C, Nagy P, Juhász G, et al. Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification[J]. Nature Communications, 2015, 6(1):7007
邹辉,孙建,于凡,等.镉暴露对BRL 3A细胞溶酶体的影响[J].中国兽医科学, 2019(12):1602-1608 Zou H, Sun J, Yu F, et al.Effect of cadmium on lysosomes in BRL 3A cells[J]. Chinese Veterinary Science, 2019(12):1602-1608(in Chinese)
Moore M N. Lysosomal cytochemistry in marine environmental monitoring[J]. The Histochemical Journal, 1990, 22(4):187-191
Svendsen C, Meharg A A, Freestone P, et al. Use of an earthworm lysosomal biomarker for the ecological assessment of pollution from an industrial plastics fire[J]. Applied Soil Ecology, 1996, 3(2):99-107
Kroemer G, Jäättelä M. Lysosomes and autophagy in cell death control[J]. Nature Reviews Cancer, 2005, 5(11):886-897
Liu B, Fang M, Hu Y, et al. Hepatitis B virus X protein inhibits autophagic degradation by impairing lysosomal maturation[J]. Autophagy, 2014, 10(3):416-430
Calisi A, Grimaldi A, Leomanni A, et al. Multibiomarker response in the earthworm Eisenia fetida as tool for assessing multi-walled carbon nanotube ecotoxicity[J]. Ecotoxicology, 2016, 25(4):677-687
Moore M N, Allen J I, Mcveigh A. Environmental prognostics:An integrated model supporting lysosomal stress responses as predictive biomarkers of animal health status[J]. Marine Environmental Research, 2006, 61(3):278-304
Fuchs J, Piola L, Elio P G, et al. Coelomocyte biomarkers in the earthworm Eisenia fetida exposed to 2,4,6-trinitrotoluene (TNT)[J]. Environmental Monitoring & Assessment, 2011, 175(1-4):127-137
Booth L H, O'Halloran K. A comparison of biomarker responses in the earthworm Aporrectodea caliginosa to the organophosphorus insecticides diazinon and chlorpyrifos[J]. Environmental Toxicology & Chemistry, 2010, 20(11):2494-2502
Svendsen C, Weeks J M. The use of a lysosome assay for the rapid assessment of cellular stress from copper to the freshwater snail Viviparus contectus (Millet)[J]. Marine Pollution Bulletin, 1995, 31(1-3):139-142

相关话题/土壤 地质 环境 生态 技术