删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华东某铀矿区周边河流表层沉积物的天然放射性评价

本站小编 Free考研考试/2021-12-30

郑立莉1,2,
周仲魁1,2,
饶苗苗1,2,
孙占学1,2,
郑仁杰2,
肖泽稷2
1. 东华理工大学核资源与环境国家重点实验室, 南昌 330013;
2. 东华理工大学水资源与环境工程学院, 南昌 330013
作者简介: 郑立莉(1994-),女,硕士,研究方向为流域水生态监测与评价,E-mail:z1078848804@163.com.
基金项目: 江西省自然科学基金资助项目(20142BAB213021);国家自然科学基金资助项目(41662024);江西省教育厅科技计划项目(GJJ13439);江西省研究生创新基金项目(YC2018-S343)


中图分类号: X171.5


Natural Radioactivity Evaluation of Surface Sediments of Rivers around a Uranium Mining Area in East China

Zheng Lili1,2,
Zhou Zhongkui1,2,
Rao Miaomiao1,2,
Sun Zhanxue1,2,
Zheng Renjie2,
Xiao Zeji2
1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China;
2. School of Water Resource and Environmental Engineering, East China University of Technology, Nanchang 330013, China

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(37)
相关文章
施引文献
资源附件(0)
访问统计

摘要:利用高纯锗γ能谱分析仪测量中国华东某铀矿区附近河流沉积物的放射性核素比活度,计算γ辐射吸收剂量率(D)、有效镭浓度(Raeq)、外照射指数(Hex)、内照射指数(Hin)、年有效剂量当量(AEDE(室内和室外))和年性腺剂量当量(AGDE)等放射性参数,并开展沉积物的放射性危害评估,最后通过Pearson线性系数确定放射性核素比活度之间的相关性。结果表明,河流沉积物中放射性核素238U、226Ra、232Th和40K的平均比活度分别为51.55、37.32、57.63和756.86 Bq kg?1,除226Ra外,其他放射性核素的比活度均高于中国平均值;距离污染区较远或存在河流稀释作用的区域,沉积物的天然放射性核素处于正常水平,作为建筑材料使用时比活度不存在超标;放射性核素238U、226Ra和232Th之间存在显著相关性。
关键词: 铀矿/
河流沉积物/
天然放射性/
放射性评价

Abstract:The specific activity of 238U, 226Ra, 232Th, and 40K in the river sediments near a uranium mine in East CHina was measured using high purity gamma spectrometry analyzer. The gamma radiation absorbed dose rate (D), radium equivalent activity (Raeq), external hazard indices (Hex), internal hazard indices (Hin), annual effective dose equivalent (AEDE (indoor and outdoor)), and annual gonadal dose equivalent (AGDE) were calculated, and an assessment for radioactive hazards of the sediments was then conducted. The correlation of the radionuclide concentrations was determined by calculating and analyzing the Pearson linear coefficient. The results indicated that the average specific activities of 238U, 226Ra, 232Th, and 40K in the river sediments were respectively 51.55, 37.32, 57.63, and 756.86 Bq kg?1. Except 226Ra, all the average specific activities of radionuclides are higher than the limited values of the averages in CHina. For the areas far from the pollution sources or with dilution of river water, the activities of natural radionuclide in the sediments remains at a normal level, which can be therefore used as a building material. A significant correlation between the radionuclides 238U, 226Ra and 232Th was observed.
Key words:uranium deposit/
river sediment/
natural radioactivity/
radioactivity evaluation.

加载中
United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR). Exposures from natural radiation sources[R]. New York:UNSCEAR, 2000
王峰凌,卢新卫,任淑花.渭河陕西段河流沉积物天然放射性研究[J].核电子学与探测技术, 2008, 28(2):422-424, 429 Wang F L, Lu X W, Ren S H. Natural radioactivity of sediments from Wei River of Shannxi Province[J]. Nuclear Electronics & Detection Technology, 2008, 28(2):422-424, 429(in Chinese)
Al-Trabulsy H, Khater A, Habbani F. Radioactivity levels and radiological hazard indices at the Saudi coastline of the Gulf of Aqaba[J]. Radiation Physics and Chemistry, 2011, 80(3):343-348
Hamideen M S, Sharaf J. Natural radioactivity investigations in soil samples obtained from phosphate hills in the Russaifa region, Jordan[J]. Radiation Physics and Chemistry, 2012, 81(10):1559-1562
方杰.辐射防护导论[M].北京:原子能出版社, 1991:26-28
Merten D, Kothe E, Büchel G. Studies on microbial heavy metal retention from uranium mine drainage water with special emphasis on rare earth elements[J]. Mine Water and the Environment, 2004, 23(1):34-43
Lu Y, Yin W, Huang L, et al. Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China[J]. Environmental Geochemistry and Health, 2011, 33(2):93-102
叶素芬,张珞平,陈伟琪.海洋放射性污染生态风险评价研究进展[J].生态毒理学报, 2016, 11(6):1-11Ye S F, Zhang L P, Chen W Q. Progress of ecological risk assessment for marine radioactive pollution[J]. Asian Journal of Ecotoxicology, 2016, 11(6):1-11(in Chinese)
杜金秋,王震,林武辉,等.放射性核素水环境质量标准研究进展[J].生态毒理学报, 2018, 13(5):27-36Du J Q, Wang Z, Lin W H, et al. Research progress of the water quality standards on radionuclides[J]. Asian Journal of Ecotoxicology, 2018, 13(5):27-36(in Chinese)
Caridi F, Marguccio S, Belvedere A, et al. Measurements of gamma radioactivity in river sediment samples of the Mediterranean Central Basin[J]. American Journal of Condensed Matter Physics, 2015, 5(3):61-68
Gbadamosi M R, Afolabi T A, Ogunneye A L, et al. Distribution of radionuclides and heavy metals in the bituminous sand deposit in Ogun State, Nigeria-A multi-dimensional pollution, health and radiological risk assessment[J]. Journal of Geochemical Exploration, 2018, 190:187-199
Bai H, Hu B, Wang C, et al. Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China[J]. Ecotoxicology and Environmental Safety, 2016, 130:185-192
Pan S, Liu R. Investigation of natural radionuclide contents in soil in China[J]. Radiation Protection, 1992, 12(2):122-142
Jiang X, Teng A, Xu W, et al. Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea[J]. Marine Pollution Bulletin, 2014, 83(1):366-375
Pejman A, Bidhendi G N, Ardestani M, et al. A new index for assessing heavy metals contamination in sediments:A case study[J]. Ecological Indicators, 2015, 58:365-373
Jiang M, Zeng G, Zhang C, et al. Assessment of heavy metal contamination in the surrounding soils and surface sediments in Xiawangang River, Qingshuitang District[J]. PloS One, 2013, 8(8):e71176
Akcay H, Oguz A, Karapire C. Study of heavy metal pollution and speciation in Buyak Menderes and Gediz River sediments[J]. Water Research, 2003, 37(4):813-822
Ozmen H, Külahci F, Cukurovali A, et al. Concentrations of heavy metal and radioactivity in surface water and sediment of Hazar Lake (Elaziğ, Turkey)[J]. Chemosphere, 2004, 55(3):401-408
Bikit I, Slivka J, VeskovićM, et al. Measurement of Danube sediment radioactivity in Serbia and Montenegro using gamma ray spectrometry[J]. Radiation Measurements, 2006, 41(4):477-481
赵世民,王道玮,李晓铭,等.滇池及其河口沉积物中重金属污染评价[J].环境化学, 2014, 33(2):276-285Zhao S M, Wang D W, Li X M, et al. Assessment on heavy metals pollution in surface sediments of Dianchi Lake and its estuaries[J]. Environmental Chemistry, 2014, 33(2):276-285(in Chinese)
Zhao Q, Zhou L, Zheng X, et al. Study on enzymatic activities and behaviors of heavy metal in sediment-plant at muddy tidal flat in Yangtze Estuary[J]. Environmental Earth Sciences, 2015, 73(7):3207-3216
Yang Z, Wang Y, Shen Z, et al. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China[J]. Journal of Hazardous Materials, 2009, 166(2-3):1186-1194
Feng H, Han X, Zhang W, et al. A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization[J]. Marine Pollution Bulletin, 2004, 49(11-12):910-915
Islam M S, Ahmed M K, Habibullah-Al-Mamun M, et al. Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh[J]. Environmental Earth Sciences, 2015, 73(4):1837-1848
Lu Z, Liu Z. Pollution characteristics and risk assessment of uranium and heavy metals of agricultural soil around the uranium tailing reservoir in Southern China[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318(2):923-933
Sroor A, El-Bahi S M, Ahmed F, et al. Natural radioactivity and radon exhalation rate of soil in southern Egypt[J]. Applied Radiation and Isotopes, 2001, 55(6):873-879
Veiga R, Sanches N, Anjos R, et al. Measurement of natural radioactivity in Brazilian beach sands[J]. Radiation Measurements, 2006, 41(2):189-196
Beretka J, Matthew P. Natural radioactivity of Australian building materials, industrial wastes and by-products[J]. Health Physics, 1985, 48(1):87-95
Qureshi A A, Tariq S, Din K U, et al. Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan[J]. Journal of Radiation Research and Applied Sciences, 2014, 7(4):438-447
United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR). Sources and effects of ionizing radiations[R]. New York:UNSCEAR, 1993
Ramasamy V, Sundarrajan M, Paramasivam K, et al. Assessment of spatial distribution and radiological hazardous nature of radionuclides in high background radiation area, Kerala, India[J]. Applied Radiation and Isotopes, 2013, 73:21-31
Kurnaz A, Küçükömeroğ lu B, Keser R, et al. Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey)[J]. Applied Radiation and Isotopes, 2007, 65(11):1281-1289
Abdi M R, Hassanzadeh S, Kamali M, et al. 238 U, 232 Th, 40 K and 137 Cs activity concentrations along the southern coast of the Caspian Sea, Iran[J]. Marine Pollution Bulletin, 2009, 58(5):658-662
Xinwei L, Lingqing W, Xiaodan J. Radiometric analysis of Chinese commercial granites[J]. Journal of Radioanalytical and Nuclear Chemistry, 2006, 267(3):669-673
刘媛媛,张春艳,魏强林,等.铀尾矿库区稻田土中放射性核素的空间分布和放射性水平评价[J].生态毒理学报, 2018, 13(5):305-312Liu Y Y, Zhang C Y, Wei Q L, et al. Spatial distribution and radiation evaluation of the radionuclides in paddy soil of the uranium tailings area[J]. Asian Journal of Ecotoxicology, 2018, 13(5):305-312(in Chinese)
Gulan L, Milenkovic B, Stajic J M, et al. Correlation between radioactivity levels and heavy metal content in the soils of the North Kosovska Mitrovica environment[J]. Environmental Science:Processes & Impacts, 2013, 15(9):1735-1742
Li F, Fan Z, Xiao P, et al. Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China[J]. Environmental Geology, 2009, 57(8):1815-1823

相关话题/生态 东华理工大学 资源 环境 辐射