删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

新材料学院的潘锋团队融合原位增强拉曼实验与量子化学计算揭示界面水分子结构

本站小编 Free考研考试/2021-12-20

在北京大学深圳研究生院建院二十周年之际,新材料学院的潘锋团队与厦门大学的李剑锋团队合作,融合原位增强拉曼实验与量子化学计算从原子和分子水平上揭示了界面水分子的有序结构及高效电催化制氢机理,为提升电催化反应速率提供了一种新的策略,解开了界面水分子结构如何调控电催化反应这一科研难题,该研究成果最近发表于《自然》杂志(Nature 2021,DOI: 10.1038/s41586-021-04068-z),为“廿载南燕”送上生日贺礼,祝北京大学在南国燕园“再启风华”。
电极/溶液界面水分子的物理化学特性是理解和发展表面科学、催化和能源科学的重要基础。在新能源应用方面水分子直接参与众多重要的电催化反应,如水解离生成氢气(HER)和氧气(OER)、二氧化碳还原(CO2RR)、氧还原(ORR)、氮还原(NRR)等,其反应过程强烈依赖于电极电势及对应的界面溶液结构与反应动力学过程。因此,在原位条件下研究界面(特别是原子级平整的模型单晶表面)水分子的结构及其在电催化反应中的构效关系,一直是电化学领域的热点和难点。

界面水的拉曼光谱和水解离示意图
团队融合增强拉曼原位监测钯单晶电极/溶液界面水分子的构型及其动态变化过程等实验与量子化学计算,发现电极/溶液界面除了已知的含有氢键网络连接水分子之外,还有一类与阳离子键合的水分子,该水合阳离子能与钯单晶负电极形成有效地静电相互作用下,在负电极电势逐渐降低时键合在阳离子上的水分子在钯单晶负电极界面排布成有序的结构。通过第一性原理分子动力学模拟进一步从理论上证实从原子尺度描述了界面水从无序到一个氢朝下再到两个氢朝下的相对有序构型的转化过程。重要的是,这类有序的界面水分子比氢键网络连接的水分子更加靠近电极表面,可以有效地实现氢与电极表面间的电荷转移,从而极大提升产氢效率。以此机理,进一步发现了提高阳离子的浓度和价态能够提升水合阳离子与负电极静电相互作用,会进一步增加界面区有序水分子的含量从而提高产氢效率。此外,研究还发现单晶电极的晶面结构和电子结构都将影响阳离子键合水分子的含量和产氢效率,证实了阳离子键合水分子对产氢效率具有普适性。
本工作通过分子尺度原位的实验观察和理论模拟计算,深入认识界面水分子结构对电催化反应过程的调控机制,发现了阳离子能够通过键合水与电极有效互相作用共同起到了提升催化效率(可看作是一种“助催化”剂),从而拓展了对固液催化的认识—电解质溶液组分和结构(如水合的阳离子浓度与价态)与固相界面结构能共同影响催化反应机制(“助催化”效应),为提升电催化反应速率提供了一种新的策略。

界面水的HER剖面和拉曼光谱
该研究工作是由潘锋和李剑锋共同指导完成,北大深研院新材料学院博士生郑世胜和厦大化学化工学院的王耀辉为论文的共同第一作者。该工作还得到了厦门大学田中群教授、利物浦大学Gary Attard教授、北大深研院新材料学院郑家新副教授、李舜宁副研究员等的支持。本研究得到国家重点研发计划项目、国家自然科学基金的资助。

相关话题/结构 过程 实验 计算 光谱