9月17日,北京大学未来技术学院分子医学研究所陈雷研究组解析了人源sGC全长蛋白与刺激剂YC-1和riociguat以及激活剂cinaciguat复合物的高分辨结构,揭示了小分子药物与sGC相互作用模式,并阐明了药物的激活机制。该文章发表于Nature Communications杂志 (全文链接https://www.nature.com/articles/s41467-021-25617-0)。
一氧化氮(NO)作为一种气体信号分子,在诸多生理过程中发挥重要作用,包括但不限于血管舒张、血小板凝集、神经信号传递和呼吸作用等。NO也是第一个信号通路被完整描述的动物自身合成的气体信号分子1。以心血管系统为例,血液流动产生的剪切力等刺激使得血管内皮细胞内的钙离子浓度升高,从而促进钙调蛋白激活一氧化氮合酶生成NO。随后NO通过自由扩散作用进入邻近的平滑肌细胞,结合并激活胞内的一氧化氮受体——可溶性鸟苷酸环化酶(sGC),催化GTP环化为cGMP。cGMP作为第二信使,作用于下游多个效应蛋白如PKG来影响诸多生理过程2。在此信号通路中,sGC作为NO受体,对信号的接收和放大具有关键作用,是重要的药物靶点。目前,靶向sGC的药物riociguat(利奥西呱)在临床上用于治疗肺动脉高压3。今年1月,vericiguat(维利西呱)被美国FDA批准用于治疗心衰。
sGC是异源二聚体蛋白,由α和β两个亚基组成,每个亚基包含4个结构域:H-NOX、PAS、 CC和催化结构域。2019年陈雷研究组解析了人源sGC全长蛋白在静息状态结构和NO结合的激活状态结构4。这些结构显示β亚基的H-NOX结构域含有一个可结合NO的亚铁血红素。NO结合会引起H-NOX结构域和整个蛋白分子的构象变化,使得sGC由静息状态转变为高活力激活状态。在病理状态下,亚铁血红素可被氧化成三价铁血红素,导致sGC不能结合NO,并处于低活力状态,阻碍了NO信号的传递。此外,三价铁血红素与sGC的亲和力很弱,易丢失5。sGC的活力降低与很多疾病密切相关。因此提高sGC活力以增强NO下游信号可用来治疗高血压等疾病。目前用于提高sGC活力的小分子药物可分为两类:一类是刺激剂,结合含有亚铁血红素的sGC,与NO协同激活sGC,适用于sGC功能正常但上游NO较少的情况,riociguat和vericiguat均属于此类小分子;另一类是激活剂,可结合含有三价铁血红素或不含血红素的sGC并将其直接激活,适用于氧化导致的sGC功能受损6,7。尽管提高sGC活力的小分子药物有重要的治疗作用,但其如何与sGC相互作用并激活sGC仍不清楚。
在寻找sGC刺激剂的浪潮中,最先发现的小分子是YC-1,它可以称为sGC刺激剂之母,后续发现的很多sGC刺激剂都是在YC-1骨架的基础上进行改进与优化而获得的。其中Bayer公司开发的riociguat由于其高激活能力及良好的药物代谢动力学特性,已脱颖而出,用于临床治疗。陈雷研究组制备了sGC与NO及YC-1或riociguat复合物的冷冻电镜样品,三维重构分辩率分别达到3.9?和3.6?。结构显示:YC-1和riociguat结合位点一致,均位于βH-NOX结构域和 CC结构域之间的缝隙中,这也与二者之间相似的分子结构相吻合。YC-1和riociguat的功能基团均与周围的β1Y112,Y2, F4,Y83, F77, V39, R40,E370和α1L425相互作用,但riociguat增加的二氨基嘧啶基团还另外与β1S81有极性相互作用,末端的甲基氨基甲酸酯部分也与α1R428距离较近。作者进一步通过一系列的突变实验验证了这些氨基酸对于riociguat功能的重要性。通过将刺激剂和NO共同结合的sGC的结构与NO单独结合的sGC的结构进行比对,作者发现刺激剂的结合推开了αE,Y83的Cα原子移动了1?,且结合位点的F4、F74的侧链位置也发生变动,使得sGC产生了一个在NO单独激活状态下并不存在的口袋,用于刺激剂结合,这暗示刺激剂的结合是通过诱导-契合的机制进行的。
图1:sGC与NO和riociguat或YC-1复合体的结构
Cinaciguat是sGC的激活剂中的典型代表,可结合并激活三价铁血红素或无血红素的sGC。作者分别用三价铁血红素sGC和无血红素sGC制备了结合cinaciguat的冷冻电镜样品。令人意外的是,两种样品中的sGC颗粒均包含两种状态:与激活状态相似的伸展构象,以及与静息状态相似的弯折构象。这两种构象的电子密度分辩率分别达到3.9?和4.1?。在这两种构象中,cinaciguat均结合在βH-NOX结构域血红素的结合位点。在弯折构象中,与静息状态sGC的结构(PDBID: 6JT1)比对,cinaciguat取代血红素使得F4和Y112的侧链位置移动,进而导致αF和βA的微小变动,引起感受器模块的构象变化,此变化经传导器模块传递到催化模块并放大,使得催化模块转动了8.6°,但是此构象中催化模块的GTP结合位点仍未打开,不能结合底物,说明该构象处于无活力状态。在伸展构象中,cinaciguat取代血红素导致的构象变化比弯折构象大得多,使得其最终处于完全伸展状态,与NO激活的sGC结构(PDBID: 6JT2)对比RMSD仅为0.39?,且有GTP底物结合,说明其处于高活力的激活状态。
通过进一步的结构比对和突变体活力检测,作者发现在伸展构象的sGC中cinaciguat的结合推动了αF的C端导致了感受器模块的构象变化,经由传导器模块传递到催化模块,激活sGC。而在弯折构象中,cinaciguat推动αF的C端的Y112程度较小,不足以引起激活sGC的构象变化,因此sGC仍然处于弯折的静息状态。
图2:sGC与cinaciguat复合体的结构
该研究揭示了sGC与YC-1类型的刺激剂和cinaciguat类型的激活剂结合并激活sGC的分子基础,为进一步优化和开发激活sGC的小分子药物奠定了基础。此两种类型的小分子均结合在非催化结构域,别构激活了sGC,也进一步验证了伸展构象与高活力sGC之间的关联,以及sGC激活过程中由弯折到伸展构象变化的重要性。
图3:刺激剂和激活剂激活sGC模式图
本项研究主要由北京大学未来技术学院分子医学所博士生刘锐和博士后康云路共同完成,陈雷研究员为通讯作者。本工作获得国家自然科学基金委、生命科学联合中心的经费支持。博士后康云路获得了北京大学博雅博士后奖学金的支持。该工作冷冻电镜样品制备、筛选和采集在北京大学冷冻电镜平台和北京大学电镜室完成,得到了李雪梅、郭振玺、邵博、裴霞和王国鹏等人的帮助。该项目的数据处理获得了北京大学CLS计算平台及未名超算平台的硬件和技术支持。
1 Horst, B. G. & Marletta, M. A. Physiologicalactivationanddeactivationofsolubleguanylatecyclase. NitricOxide77, 65-74, doi:10.1016/j.niox.2018.04.011 (2018).
2 Poulos, T. L. Solubleguanylatecyclase. CurrOpinStructBiol16, 736-743, doi:10.1016/j.sbi.2006.09.006 (2006).
3 Dasgupta, A., Bowman, L., D'Arsigny, C. L. & Archer, S. L. Solubleguanylatecyclase: anewtherapeutictargetforpulmonaryarterialhypertensionandchronicthromboembolicpulmonaryhypertension. Clin. Pharmacol. Ther.97, 88-102, doi:10.1002/cpt.10 (2015).
4 Kang, Y., Liu, R., Wu, J. X. & Chen, L. Structuralinsightsintothemechanismofhumansolubleguanylatecyclase. Nature574, 206-210, doi:10.1038/s41586-019-1584-6 (2019).
5 Olesen, S. P.etal.CharacterizationofNS2028asaspecificinhibitorofsolubleguanylylcyclase. Br. J. Pharmacol.123, 299-309, doi:10.1038/sj.bjp.0701603 (1998).
6 Evgenov, O. V.etal.NO-independentstimulatorsandactivatorsofsolubleguanylatecyclase: discoveryandtherapeuticpotential. NatRevDrugDiscov5, 755-768, doi:10.1038/nrd2038 (2006).
7 Follmann, M.etal.Thechemistryandbiologyofsolubleguanylatecyclasestimulatorsandactivators. AngewChemIntEdEngl52, 9442-9462, doi:10.1002/anie.201302588 (2013).
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
陈雷研究组报道一氧化氮受体sGC被刺激剂和激活剂活化的结构机制
本站小编 Free考研考试/2021-12-20
相关话题/结构 信号 药物 北京大学 博士后
北京大学肿瘤医院分子影像临床转化平台建设取得系列突出成绩
在恶性肿瘤、心脑血管疾病、神经退行性疾病等重大疾病的诊断治疗中,分子影像技术具有不可替代的优势。分子影像技术是生命科学和临床医学最重要的一类工具,传统成像技术难以实现早期微小肿瘤成像,核医学分子影像可以达到无创精准个体化的诊疗。以PET/CT为代表性的新技术的出现为疾病诊疗提供了全新视野,如果把PE ...北京大学通知公告 本站小编 Free考研考试 2021-12-20物理学院刘开辉教授课题组在单根碳纳米管螺旋结构表征研究中取得重要进展
北京大学物理学院、人工微结构和介观物理国家重点实验室刘开辉教授课题组等人提出并发展了瑞利散射圆二色性光谱技术,实现单根碳纳米管水平上手性结构和螺旋结构的完整测定,有望为单一螺旋结构碳管可控生长、量子物性研究及芯片应用提供核心表征技术,同时也为手性材料结构设计、物性探索和器件应用研究提供全新技术平台。 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20北京大学焦宁研究团队在Nature发文报道芳烃衍生物断裂转化新突破
7月19日,北京大学药学院、天然药物及仿生药物国家重点实验室焦宁研究团队在《自然(Nature)》在线发表题为“芳环断裂制备烯基腈”的最新研究论文,报道了关于芳环选择性催化断裂转化的突破性研究成果。论文截图通过仿生设计,该团队提出级联活化的策略,首次解决了惰性芳香化合物选择性催化开环转化的重大科学难 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20生科院张传茂实验室揭示Hedgehog信号通路蛋白Sufu同时负调控中心体复制和DNA复制起始的分子机制
2021年07月13日,北京大学生命科学学院张传茂教授实验室在《美国科学院院刊》(PNAS)上长文在线发表题为“SufunegativelyregulatesbothinitiationsofcentrosomeduplicationandDNAreplication”的研究论文。该项工作发现Suf ...北京大学通知公告 本站小编 Free考研考试 2021-12-20北京大学高歌课题组开发出基于自适应卷积核的新卷积学习方法
深度学习是机器学习的一种,通常指基于表示学习的深度神经网络,如基于卷积神经层构建的卷积神经网络、基于递归神经层构建的递归神经网络等。它适合用来发现海量高维数据背后的复杂模式。近十年来,随着计算机算力的大幅提升,深度学习在图像识别、自然语言处理等领域取得了众多成果,其中可以捕捉数据局部特征的卷积神经网 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20北京大学黄晓军团队揭示移植后血小板延迟植入的新机制
2021年6月18日,国家血液系统疾病临床医学研究中心、北京大学人民医院、北京大学血液病研究所黄晓军教授及孔圆研究员共同通讯在SignalTransductionandTargetedTherapy(IF=13.493)在线发表了题为“M2macrophages,butnotM1macrophage ...北京大学通知公告 本站小编 Free考研考试 2021-12-20北京大学魏文胜课题组在Nature Biotechnology 发文报道基于碱基编辑的新型高通量功能性筛选方法
2021年6月21日,北京大学生物医学前沿创新中心、北京未来基因诊断高精尖创新中心魏文胜课题组在NatureBiotechnology在线发表题为“Genome-wideinterrogationofgenefunctionsthroughbaseeditorscreensempoweredbyba ...北京大学通知公告 本站小编 Free考研考试 2021-12-20分子所李川昀课题组发布恒河猴参考基因结构 揭示人类转录本演化新机制
作为人类近缘的非人灵长类模式动物,恒河猴在脑科学、分子演化、药物研发等基础与转化研究中发挥着不可替代的作用。然而,目前恒河猴基因结构主要源于预测,严重制约了该特色模型在分子水平的研究与应用。近日,北京大学分子医学研究所李川昀教授课题组运用全长转录本测序技术,开发了生物信息学新方法,重新准确定义了恒河 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20新材料学院潘锋课题组在基于拓扑数学与机器学习研究材料结构规律上取得进展
机器学习在各领域的广泛应用促生其在材料领域的应用,它提供了一种新型的工具,即能从高维数据中发现数据间的规律,有助于减少计算量从而加速对新材料的探索。特征提取(特征工程)是机器学习的关键组成部分,选择合适的形式来表达将直接影响最终模型的效果。在材料科学领域必须要捕获所有的相关信息,从而达到区分不同原子 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20北京大学国际关系学院教授王栋在Foreign Affairs发表文章
2021年4月15日,北京大学国际关系学院长聘正教授、中外人文交流研究(教育部)基地执行主任王栋在外交事务领域全球权威刊物ForeignAffairs(《外交事务》)发表题为“TheCaseforaNewEngagementConsensus:AChineseVisionofGlobalOrder” ...北京大学通知公告 本站小编 Free考研考试 2021-12-20