近年来发现的范德瓦尔斯磁体是一种低维自旋有序体系。这种体系由于在二维超薄极限下仍然可能具有磁序,且具有高度可调性和功能化特性而受到广泛关注。其中,二维磁体的自旋波量子(磁振子)作为一种低功耗的信息载体,在未来量子增强的信息技术领域具有重要的应用潜力。
磁振子应用于信息领域所面临的第一个门槛是制备类比于基于电荷的晶体管开关效应的磁振子的“开”态和“关”态。由于磁振子的强波动性,注入和探测磁振子信号相对易于实现,但是通过栅电极在非特征频率下完全关闭磁振子信号则是一个尚未解决的国际性难题。此前,人们通过磁场变化实现了磁振子信号的开关,然而磁场难以局域化的特点使得这类磁控磁振子阀无法进行规模集成。因此,实现可完全开关、易于小型化和集成化的电控磁振子阀一直是科学家的追求目标。
陈剑豪课题组长期研究低维量子材料器件物理,与合作者在低维高迁移率材料、低维拓扑材料和低维磁性材料领域完成一系列重要的研究工作,如发现原位氢化石墨烯的可控自旋轨道耦合和铁磁-反铁磁耦合相变(Physical Review B102, 045402 (2020);Physical Review B 104, 125422 (2021)),发现拓扑半金属的对称性破缺和非线性光电效应(Advanced Materials 30, 1706402 (2018);Nature Materials 18, 476 (2019))等。
近日,陈剑豪课题组实验发现低维磁体的磁振子输运过程具有高度可调性,并与北京大学谢心澄院士、近藤龙一(Ryuichi Shindo)研究员,复旦大学肖江教授、南阳理工大学刘政副教授和中山大学于鹏副教授等合作,建立了二维磁振子模型,并量化分析了其输运过程中的高度非线性;利用这种非线性,陈剑豪课题组制备了基于范德瓦尔斯反铁磁绝缘体MnPS3(锰磷硫)的磁振子阀,实现了对其二次谐波磁振子信号的完全可逆电调控,并首次演示了扩散型磁振子逻辑非门。磁振子逻辑是一种崭新的低功耗数字电路方案,未来有望成为基于电荷逻辑方案的良好补充。
图1. MnPS3磁振子阀结构图
A.反铁磁绝缘体MnPS3的晶体和自旋结构的原子模型;B.MnPS3磁振子阀装置的原子力显微图,其中注入端、栅极和探测端电极分别用深绿色、红色和蓝色标记;C.磁振子的产生、调控和探测示意图,其中左上部分展示了带有外部电路的器件结构和面内磁场的方向,右下部分展示了栅极对自旋波的电调控,Iin为交流注入电流,Igate为直流栅极调控电流,V2ω为逆自旋霍尔电压二次谐波信号,θ为面内磁场与x方向的夹角
图2. MnPS3磁振子阀的电调控
A.V2ω,0与直流栅极电流Igate在B=9T、T=2K下的关系;B.V2ω在不同Igate下与外部磁场角度θ的关系;C.利用Igate在0μA(“开”态)和150μA(“关”态)之间实现MnPS3磁振子阀的反复开关(磁振子非门)
这项研究工作还预言了包括但不限于CrI3(碘化铬)、CrBr3(溴化铬)、FePS3(铁磷硫)、CrPS4(铬磷硫)等一大类范德瓦尔斯铁磁和反铁磁材料,都将表现出与MnPS3类似的磁振子阀调控效果。该成果作为低维自旋电子学领域研究的一项突破,对材料科学、纳米电子学和物理学领域都将产生重大影响。
2021年11月1日,相关研究成果以“电控范德瓦尔斯磁振子阀”(Electrically switchable van der waals magnon valves)为题,在线发表于《自然·通讯》(Nature Communications);北京大学2017级博士研究生陈光毅和齐少勉为共同第一作者;陈剑豪为通讯作者。
上述研究工作得到了国家重点研发计划“量子调控与量子信息”重点专项、国家自然科学基金、北京市自然科学基金****科学基金、中国科学院战略性先导科技专项等项目的支持。
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
物理学院量子材料科学中心陈剑豪研究员课题组实现首个电控二维磁振子阀
本站小编 Free考研考试/2021-12-20
相关话题/信号 材料 信息 逻辑 结构
物理学院量子材料科学中心高鹏研究员课题组利用低剂量原子成像方法揭示有机无机杂化钙钛矿的结构与分解路径
北京大学物理学院量子材料科学中心、电子显微镜实验室高鹏研究员课题组与合作者利用低剂量成像技术实现了杂化钙钛矿(CH3NH3PbI3)在原子尺度上的结构表征,并揭示了其分解路径。2021年9月17日,相关研究成果以《原子尺度揭示CH3NH3PbI3结构及分解路径》(Atomic-scaleimagin ...北京大学通知公告 本站小编 Free考研考试 2021-12-20信息学院黄铁军课题组在Cell子刊发文揭示生物视网膜编码动态自然场景机理
神经编码是指大脑将外界刺激(如视觉、嗅觉)转化为神经元脉冲响应的过程,是脑科学研究的关键问题,也对机器视觉和机器感知意义重大。大脑中所接收的信息超过70%都是来自于视觉系统,视网膜作为心灵之窗,是生物视觉信息处理的第一站,负责对时空中不断变化的可见光进行实时编码。目前已经提出了很多模拟生物视网膜的信 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20生命科学学院姚蒙、李晟课题组报道基于DNA宏条形码解析我国西南山地多种食肉动物复杂食物网结构和物种共存机制
2021年9月21日,北京大学生命科学学院和北京大学生态研究中心姚蒙和李晟课题组在CurrentBiology上以研究长文(Article)发表题为“Preypartitioningandlivestockconsumptionintheworld’srichestlargecarnivoreass ...北京大学通知公告 本站小编 Free考研考试 2021-12-20生命科学学院赵进东、高宁团队揭示蓝细菌藻胆体光能传递的结构基础
2021年9月17日,北京大学赵进东院士课题组与高宁教授课题组在NatureCommunications上发表了题为“StructuralInsightintotheMechanismofEnergyTransferinCyanobacterialPhycobilisomes”的研究论文。论文利用冷 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20陈雷研究组报道一氧化氮受体sGC被刺激剂和激活剂活化的结构机制
9月17日,北京大学未来技术学院分子医学研究所陈雷研究组解析了人源sGC全长蛋白与刺激剂YC-1和riociguat以及激活剂cinaciguat复合物的高分辨结构,揭示了小分子药物与sGC相互作用模式,并阐明了药物的激活机制。该文章发表于NatureCommunications杂志(全文链接htt ...北京大学通知公告 本站小编 Free考研考试 2021-12-20新材料学院在《化学学会评论》发表离子称量技术在电池中应用的教程类综述文章
深入理解与分析电池(包括锂离子、钠离子、空气电池等)运行过程中的体相和界面行为对于电池性能的持续改进具有重要意义。电化学石英晶体天平(EQCM)离子称量技术是实现这一目标的有力工具,因为它可以在原位工况下研究电池各种现象,包括电极内的离子插入/脱嵌、电解液中的固体成核、界面形成/演化和固液配位等。因 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20物理学院刘开辉教授课题组在单根碳纳米管螺旋结构表征研究中取得重要进展
北京大学物理学院、人工微结构和介观物理国家重点实验室刘开辉教授课题组等人提出并发展了瑞利散射圆二色性光谱技术,实现单根碳纳米管水平上手性结构和螺旋结构的完整测定,有望为单一螺旋结构碳管可控生长、量子物性研究及芯片应用提供核心表征技术,同时也为手性材料结构设计、物性探索和器件应用研究提供全新技术平台。 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20物理学院量子材料科学中心高鹏研究员与合作者首次在玻璃衬底上异质外延出准单晶氮化镓薄膜
物理学院量子材料科学中心高鹏研究员与合作者巧妙运用石墨烯的晶格引导氮化物的晶格排列,在非晶玻璃衬底上成功异构外延出高质量的准单晶氮化镓薄膜,并制备发光器件。相关研究成果于2021年7月30日在线发表于《科学·进展》(ScienceAdvances)。以氮化镓(GaN)、氮化铝(AlN)为代表的第三代 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20生科院张传茂实验室揭示Hedgehog信号通路蛋白Sufu同时负调控中心体复制和DNA复制起始的分子机制
2021年07月13日,北京大学生命科学学院张传茂教授实验室在《美国科学院院刊》(PNAS)上长文在线发表题为“SufunegativelyregulatesbothinitiationsofcentrosomeduplicationandDNAreplication”的研究论文。该项工作发现Suf ...北京大学通知公告 本站小编 Free考研考试 2021-12-20深研院新材料学院在《自然.通讯》发表运用代数图论与机器学习实现定量预测分子特性
大数据和人工智能与化学基因和材料基因的融合正推动生物医学和新材料的前沿科学发展。近年来,机器学习,尤其是深度学习,已经成为基于数据驱动的分子尺度发现化学基因和材料基因强大方法。2019年冠状病毒病(COVID-19)暴发一年后还没有特异性的有效药物,这提醒我们生物医药是复杂的前沿科学领域,有效的药物 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20