范可尼贫血症(Fanconi anemia, FA)是一种严重的人类遗传疾病,最初由瑞士儿科医生Guido Fanconi在1927年发现记录(1)。其主要表现为骨髓衰竭(bone marrow failure,BMF)、发育畸形及癌症的易发性。迄今为止,已发现至少有22种FA基因(FANCA-W)的突变将会导致该疾病的发生。这些基因表达的蛋白共同参与一条特殊的DNA修复途径——范可尼修复途径(FA pathway)。由于FA患者的细胞对引发DNA链间交联(interstrand crosslink, ICL)的药物表现出超高的敏感性。因此,长期以来人们普遍认为FA途径的主要功能是修复ICL,而FA疾病是由内源性ICL的修复缺陷引起的。然而,产生ICL的内源性诱导因素仍然难以捉摸。最近的小鼠和人类遗传证据表明,内源性的醛类是FA病症的原因(2, 3)。但醛类不仅能够引起ICLs,更多的是产生单加成物(4)、引起蛋白质-DNA的交联(5),还能通过影响四氢叶酸的代谢产生复制压力(6)。因此,依然无法确定哪种DNA损伤修复的缺陷最终导致FA疾病。
2021年6月10日,北京大学生命科学院、蛋白质与植物基因研究国家重点实验室徐冬一课题组在Nature Structural & Molecular Biology上发表文章“Fanconi anemia proteins participate in a break-induced-replication-like pathway to counter replication stress”,发现FA途径本质上是一条断裂诱导的复制(break-induced replication,BIR)途径,用于修复停滞的复制叉,并且提出了持续复制压力是FA症状的潜在内源性病因的观点。
染色体DNA在生命的延续过程中处于核心地位,因此DNA的精准复制以及基因组的稳定维护具有特别重大的意义。然而,来自于内源以及外源的各种扰动会干扰复制过程的正常进行与完成,形成复制压力(replication stress)。复制压力会导致复制叉前进减缓甚至停止,影响DNA的合成。持续的复制压力会导致复制叉崩塌,从而造成双链断裂,该损伤对细胞以及生命体伤害巨大而且难以修复。复制压力造成的复制叉停滞也是癌细胞基因组重排和突变的主要来源。因此损伤复制叉的修复和重启对生命体具有重要的意义。
尽管FA蛋白已被证明可能参与复制压力应答,但与之相悖的是长期以来人们从未发现FA缺失细胞对复制压力药物的敏感性(7-9)。该研究作者首先验证了这一结论,发现FA基因缺失型细胞对短期处理的复制压力药物aphidicolin(APH)或hydroxyurea(HU)并不敏感。令人惊讶的是,FA缺失细胞系对持续复制压力药物(APH或HU)处理表现出极高的敏感性。这种敏感性来自于持续复制压力下,FA缺失细胞染色体的逐渐丢失。进一步的免疫荧光实验发现FA细胞在分裂后期产生的超细DNA桥结构(UFBs)以及微核均有明显的增加。
该研究实验组在早期的研究(10)中发现,停滞的复制叉通过两个主要途径完成重启过程:在复制压力的早期依赖53BP1 的切割非依赖途径,以及在复制压力晚期依赖BRCA1 (也称为FANCS,该基因突变也引起FA疾病)的断裂诱导复制(BIR)途径。53BP1 和BRCA1 在复制压力下拮抗性地调节了两条停滞复制叉重启途径的选择。BIR 是一种独特的同源重组(homologous recombination,HR)机制,用于修复单端的DNA 断裂。该途径也参与分裂期DNA合成过程(Mitotic DNA Synthesis, MiDAS过程),它的缺失会导致UFB和微核。该研究作者证明了FA蛋白在BRCA1依赖的BIR/MiDAS途径中发挥着重要作用,FA蛋白作用于BRCA1的下游、促进复制叉切割,从而协助停滞的复制叉重新启动。在进一步研究中发现BIR途径和FA途径具有统一的分子机制:首先,53BP1-BRCA1拮抗性地调节FA途径的起始步骤——复制叉切割,这种拮抗能力源自于它们在复制叉重启中的功能;其次BIR途径和FA途径均是依赖核酸酶SLX4和FAN1来介导复制叉的切割过程;最后,它们均依赖于POLD3来完成DNA的合成过程。这表明FA途径本质上是一种BIR途径。
FA蛋白参与复制重启的模式图
基于FA蛋白在复制压力下的BIR途径中的重要作用,本研究作者推测复制压力可能是造成FA症状的内源性因素。为了验证此猜想,本研究作者构建了FANCL缺失的小鼠模型,通过每日腹腔注射低剂量的复制压力药物HU后,发现持续复制压力能够引发FANCL缺失小鼠的贫血症状,其小鼠造血祖细胞的增殖分化功能异常,最终触发FANCL缺失小鼠的骨髓衰竭表型。在寻找FA病症与复制压力相关的生理条件下的证据时,本研究作者发现复制压力能够特异性诱导FANCC缺失的人淋巴TK6细胞7号染色体的丢失,这一现象与已经发现的FA病人细胞频发的7号染色体丢失相一致,进一步说明持续复制压力是FA症状的潜在的内源性病因。
对照组与实验组小鼠股骨HE染色切片(a)和单位面积骨髓内的细胞量统计(b)
该研究揭示了FA途径本质的功能和分子机制、阐释了范可尼病症发病的新机制。这不仅能够帮助大家预防和治疗FA基因突变导致的骨髓衰竭等症状,还将有助于正常人群预防和治疗血液系统早衰,同时加深大家对癌症发生发展的理解,具有重要理论和临床意义。
北京大学生命科学院徐冬一组许鑫璘博士、徐毅曦博士后为该研究论文的共同第一作者。此外,该组的郭瑞媛、续然和付聪聪等同学也在该研究中作出了贡献。同时该研究得到了北京大学生命科学学院李晴课题组、京都大学生命科学研究科放射生物学研究中心Minoru Takata课题组和京都大学医学研究科辐射遗传学系Shunichi Takeda课题组的支持与帮助。
参考文献:
1. Bogliolo M, Surrallés J. Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics. Current opinion in genetics & development. 2015 2015/08/01/;33:32-40. doi:https://doi.org/10.1016/j.gde.2015.07.002.
2. Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature. 2011 Jul 6;475(7354):53-8. eng. Epub 2011/07/08. doi:10.1038/nature10192. Cited in: Pubmed; PMID 21734703.
3. Hira A, Yabe H, Yoshida K, Okuno Y, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Nakamura J, Kojima S, Ogawa S, Matsuo K, Takata M, Yabe M. Variant ALDH2 is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients. Blood. 2013 2013/10/31/;122(18):3206-3209. doi:https://doi.org/10.1182/blood-2013-06-507962.
4. Duxin JP, Walter JC. What is the DNA repair defect underlying Fanconi anemia? Current Opinion in Cell Biology. 2015 2015/12/01/;37:49-60. doi:https://doi.org/10.1016/j.ceb.2015.09.002.
5. Cohen Hubal EA, Schlosser PM, Conolly RB, Kimbell JS. Comparison of Inhaled Formaldehyde Dosimetry Predictions with DNA–Protein Cross-Link Measurements in the Rat Nasal Passages. Toxicology and Applied Pharmacology. 1997 1997/03/01/;143(1):47-55. doi:https://doi.org/10.1006/taap.1996.8076.
6. Garcia-Calderon CB, Bejarano-Garcia JA, Tinoco-Gago I, Castro MJ, Moreno-Gordillo P, Piruat JI, Caballero-Velazquez T, Perez-Simon JA, Rosado IV. Genotoxicity of tetrahydrofolic acid to hematopoietic stem and progenitor cells. Cell Death Differ. 2018 Nov;25(11):1967-1979. Epub 2018/03/08. doi:10.1038/s41418-018-0089-4. Cited in: Pubmed; PMID 29511342.
7. Schlacher K, Wu H, Jasin M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer cell. 2012 Jul 10;22(1):106-16. eng. Epub 2012/07/14. doi:10.1016/j.ccr.2012.05.015. Cited in: Pubmed; PMID 22789542.
8. Tian Y, Shen X, Wang R, Klages-Mundt NL, Lynn EJ, Martin SK, Ye Y, Gao M, Chen J, Schlacher K, Li L. Constitutive role of the Fanconi anemia D2 gene in the replication stress response. The Journal of biological chemistry. 2017 Dec 8;292(49):20184-20195. eng. Epub 2017/10/13. doi:10.1074/jbc.M117.814780. Cited in: Pubmed; PMID 29021208.
9. Chen X, Bosques L, Sung P, Kupfer GM. A novel role for non-ubiquitinated FANCD2 in response to hydroxyurea-induced DNA damage. Oncogene. 2016 Jan 7;35(1):22-34. eng. Epub 2015/04/22. doi:10.1038/onc.2015.68. Cited in: Pubmed; PMID 25893307.
10. Xu Y, Ning S, Wei Z, Xu R, Xu X, Xing M, Guo R, Xu D. 53BP1 and BRCA1 control pathway choice for stalled replication restart. eLife. 2017;6. doi:10.7554/eLife.30523.
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
生命科学学院徐冬一组揭示范可尼贫血症发病新机制
本站小编 Free考研考试/2021-12-20
相关话题/细胞 过程 疾病 药物 基因
汤富酬/文路团队与乔杰/黄锦团队合作利用DNA甲基化追溯囊胚培养液中游离DNA细胞来源
人类的妊娠效率很低,自然妊娠中只有不到50%的胚胎能够发育至足月。部分流产胚胎主要是源于胚胎的非整倍体染色体异常,在移植胚胎前鉴定并排除非整倍体胚胎是辅助生殖领域面临的巨大挑战。当前临床上多采用对植入前胚胎的滋养外胚层进行样品活检和遗传学检测的方式来分析胚胎细胞的染色体倍性。该方法因涉及侵入性的胚胎 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20生命科学学院孔道春实验室揭示真核细胞维持DNA复制叉稳定的核心机制
2021年6月10日,北京大学生命科学学院孔道春实验室在美国科学院期刊PNAS在线发表了题为“Theintra-Sphasecheckpointdirectlyregulatesreplicationelongationtopreservetheintegrityofstalledreplisome ...北京大学通知公告 本站小编 Free考研考试 2021-12-20生命科学学院邓宏魁课题组建立人潜能扩展多能干细胞(EPS细胞)的培养体系
2021年5月21日,生命科学学院邓宏魁研究组在NatureCommunications杂志上发表了题为“ChemicallyDefinedandXeno-freeCultureConditionforHumanExtendedPluripotentStemCells”的研究论文,在体外建立了成分明 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20物理学院孙栋课题组在第二类外尔半金属钽铱碲各向异性响应动态演化过程研究中取得重要进展
第二类外尔半金属钽铱碲因其贝里曲率引起的位移电流增强,在中红外波段响应度大幅提高,具备极高的光电探测应用潜力;同时,各向异性的晶体结构使其具有各向异性的光学及电学性质,成为未来新型及高性能电子、光电器件的理想材料。通过研究钽铱碲光激发热载流子的动态演化过程,可以为材料在强场条件下的应用提供理论基础。 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20生命学院杜鹏课题组揭示通过抑制剪接体捕获和维持小鼠全能性干细胞
小鼠胚胎发育由合子开始,经过2细胞、4细胞、8细胞和桑椹胚形成囊胚,之后继续发育形成胚内和胚外组织。具有最高潜能的干细胞被称为全能性干细胞,一般指体内的合子,2/4细胞,它可以发育到胚内和胚外组织。多能性干细胞一般来源于囊胚的内细胞团,其发育潜能受限,只能发育到胚内组织。1981年,人们首次在体外分 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20分子所李川昀课题组发布恒河猴参考基因结构 揭示人类转录本演化新机制
作为人类近缘的非人灵长类模式动物,恒河猴在脑科学、分子演化、药物研发等基础与转化研究中发挥着不可替代的作用。然而,目前恒河猴基因结构主要源于预测,严重制约了该特色模型在分子水平的研究与应用。近日,北京大学分子医学研究所李川昀教授课题组运用全长转录本测序技术,开发了生物信息学新方法,重新准确定义了恒河 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20生命科学学院杜鹏课题组与合作者揭示胚层分化过程中的全局miRNA剂量控制机制
miRNA是真核生物中广泛存在的长约21到23个核苷酸的小核糖核酸分子,它们无法翻译成蛋白质,但是可以在转录后水平调控基因的表达。Microprocessor复合物(微处理器复合物)主要由一个DROSHA和两个DGCR8蛋白组成,可以将pri-miRNA加工切割成大约70~90个碱基的pre-miR ...北京大学通知公告 本站小编 Free考研考试 2021-12-20何爱彬研究组开发CoTECH实现单细胞多维表观重构
细胞命运或状态由多维度染色质修饰景图及其调控基因表达谱决定。虽然各类组蛋白修饰、转录因子结合等表观因子调控的机制与结果各异,却协同决定了基因的选择性表达。全局性的研究多维度的表观因子相互作用有助于理解生命发育基因表达调控的机制和细胞命运的决定,以及疾病发生过程基因表达异常的原因,为疾病的治疗提供理论 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20白凡课题组与合作者在Nature Communications发文揭示细菌细胞壁生长定量规律
2021年4月12日,《自然·通讯》(NatureCommunications)在线发表了北京大学生物医学前沿创新中心(BIOPIC)、生命科学学院白凡课题组的合作研究论文“Probingbacterialcellwallgrowthbytracingwall-anchoredproteincomp ...北京大学通知公告 本站小编 Free考研考试 2021-12-20林一瀚课题组在Mol Cell发文 报道TFp300共凝聚调控基因转录爆发动力学
p300和它的同源基因CREB-bindingprotein(CBP)是转录调控过程中发挥重要作用的转录共激活因子【1】。p300/CBP的突变或者染色体易位会引起基因表达紊乱和疾病的发生【2】。前人的研究结果表明,p300/CBP至少通过两种方式来调控基因转录【3】。一方面,p300/CBP可以作 ...北京大学通知公告 本站小编 Free考研考试 2021-12-20