实现功能强大的量子信息处理芯片是当前量子科技革命的关键。一个由布里斯托尔大学物理系量子光学中心、北京大学“极端光学创新研究团队”等单位组成的国际合作团队,于2018年3月8日在国际顶级学术期刊《科学》(Science)上报告利用大规模集成硅基纳米光量子芯片技术,实现对高维度光量子纠缠体系的高精度和普适化量子调控和量子测量。
??基于硅纳米光波导的大规模集成光量子芯片(可实现对高维量子纠缠体系的高精度、可编程、且任意通用量子操控和量子测量)
集成光学量子芯片技术基于量子力学基本物理原理,使用半导体微纳加工工艺实现单片集成光波导量子器件(包括单光子源、量子操控和测量光路,以及单光子探测器等),可以实现对量子信息的载体单光子进行处理、计算、传输和存储等。集成光学量子芯片具有集成度高、稳定性高、性能好、体积小、制造成本低等诸多优点。因此,该技术被普遍认为是一种实现光量子信息应用的有效技术手段。
利用硅基纳米光波导技术实现的光量子芯片具有诸多独特优点,例如与传统微电子加工工艺兼容、可集成度高、非线性效用强,以及工作波长与光纤量子通信兼容等。然而,迄今为止光量子芯片的复杂度仅限于小规模的演示,如集成少数马赫-曾德干涉仪对光子态进行简单操控。因此,我们迫切需要扩大集成量子光路的复杂性和功能性,增强其量子信息处理技术的能力,从而推进量子信息技术的应用。
相干且精确地控制复杂量子器件和多维纠缠系统是量子信息科学和技术领域的一项难点。相对于目前普遍采用的二维体系量子技术,高维体系量子技术具有信息容量大、计算效率高,以及抗噪声性强等诸多优点。最近,多维度量子纠缠系统已分别在光子、超导、离子和量子点等物理体系中实现。利用光子的不同自由度,如轨道角动量模式、时域和频域模式等,可以有效编码和处理多维光量子态。然而,实现高保真度、可编程及任意通用的高维度量子态操控和量子测量,依然面临很多困难和挑战。
针对上述问题,英国布里斯托尔大学、北京大学、丹麦技术大学、德国马普研究所、西班牙光学研究所和波兰科学院的科研人员密切合作,取得了突破性进展。研究团队提出并实现了一种新型的多路径加载高维量子态方式,即每个光子以量子叠加态的形式同时存在于多条光波导路径,从而实现了一个高达15×15的高维量子纠缠系统。通过可控地激发16个参量四波混频单光子源阵列,可以制备具有任意复系数的高维度量子纠缠态。通过单片集成通用型线性光路,可对高维量子纠缠态进行任意操控和任意测量。因此,该多路径高维量子方案具有任意通用性。与此同时,团队充分利用集成光路的高稳定性和高可控性,实现了高保真度的高维量子纠缠态,如4、8和12维度纠缠态的量子态层析结果分别为96、87%和81%保真度,远超其他方式制备的高维量子纠缠态性能。
更重要的是,团队通过硅基纳米光子集成技术,实现了目前集成度最复杂的光量子芯片(如图所示),单片集成550多个光量子元器件,包括16个全同的参量四波混频单光子源阵列、93个光学移相器、122个光束分束器、256个波导交叉结构以及64个光栅耦合器,从而达到对高维量子纠缠体系的高精度、可编程、且任意通用量子操控和量子测量。
研究进一步利用该高维光量子芯片技术,验证高维度量子纠缠系统的强量子纠缠关联特性,包括普适化贝尔不等式和EPR导引不等式等,证明量子物理和经典物理定律的重要区别。例如,对4维度量子纠缠态,实验观察得到了2.867±0.014的贝尔参数,不仅成功违背经典物理定律61.9个标准差,而且超过普通二维纠缠体系的最大可到达值的2.8个标准差。研究还首次实现了高维量子系统的贝尔自检测和量子随机放大等新功能,例如,对3维度最大纠缠态和部分纠缠态的自检测保真度约为76%,对14维以下纠缠态均实现了量子随机放大功能。研究展示出高维量子体系在量子通信和量子计算方面的独特优势,并有望扩展于更复杂更高维度的量子纠缠体系。研究工作将有效推进量子通信和量子计算等领域的重要实际应用,这对占据量子信息科学与技术制高点等具有重要的战略意义。
布里斯托尔大学、现北京大学青年********王剑威,布里斯托尔大学博士生Stefano Paesani以及丹麦科技大学研究员丁运鸿位研究论文的共同第一作者。论文作者还包括北京大学龚旗煌教授、布里斯托尔大学Jeremy O’Brien教授和Mark Thompson教授等、西班牙ICFO Antonio Acin教授,以及德国马普研究所、波兰科学院和哥本哈根大学等机构的****。
该研究工作得到了国家自然科学基金委、人工微结构和介观物理国家重点实验室等的支持。(相关报道另见新华网记者张家伟报道)
相关报道:新技术有助提升光量子芯片计算性能
编辑:山石
责编:江南
?
?
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
极端光学团队国际合作实现大规模硅基集成高维光量子芯片
本站小编 Free考研/2020-04-10
相关话题/技术 测量
信息科学技术学院彭练矛团队碳基集成电路成果被《2017自然指数·科学城市》专题报道
2017年10月19日,英国《自然》增刊《2017自然指数·科学城市》(NatureIndex2017ScienceCities)(第550卷,7676期)出版。“自然指数”分析了全球500座城市的科研产出数据,通过加权分数式计量(WFC)统计出全球科研产出最高的十大城市,北京以1693分夺冠。这项 ...北京大学通知公告 本站小编 Free考研 2020-04-10汤富酬课题组发表单细胞表观多组学测序技术的最新研究成果
2017年6月16日,北京大学生命科学学院生物动态光学成像中心汤富酬课题组在CellResearch杂志在线发表了题为“Single-cellmulti-omicssequencingofmouseearlyembryosandembryonicstemcells”的研究论文。该研究在国际上率先发展 ...北京大学通知公告 本站小编 Free考研 2020-04-10信息科学技术学院彭练矛教授课题组在碳纳米管三维光电集成研究中取得重要进展
集成电路是新一代信息技术产业的重要组成部分。过去数十年间,按照摩尔定律的预测,随着晶体管尺寸不断缩减,芯片的功能越来越强大、集成度越来越高。然而随着10nm技术节点的接近,因受到物理定律、成本等制约而很难进一步提升。2015年,国际半导体技术发展路线图(ITRS)委员会正式宣布摩尔定律将走到尽头,信 ...北京大学通知公告 本站小编 Free考研 2020-04-10信息科学技术学院张海霞教授课题组在压电摩擦复合式纳米发电机研究中取得重要进展
日前,北京大学信息科学技术学院张海霞教授课题组利用静电纺丝工艺,成功研制出可用于柔性表面按压能量采集和人体生理信号检测的压电摩擦复合式纳米发电机。相关研究成果以《用于生物机械能采集和生理信号监测的柔性纤维基复合纳米发电机》(Flexiblefiber-basedhybridnanogenerator ...北京大学通知公告 本站小编 Free考研 2020-04-10工学院陈匡时课题组在单分子成像RNA技术方面取得新进展
最近,北京大学工学院生物医学工程系陈匡时课题组基于寡核苷酸技术研制出一种能在活细胞中灵敏检测单个RNA分子的手段,并首次证实该手段在单分子水平下成像长链非编码RNA的可行性。相关研究成果已发表于ScientificReports,题目为“Amolecularbeacon-basedapproachf ...北京大学通知公告 本站小编 Free考研 2020-04-10化学学院彭海琳课题组在《自然?纳米技术》报道超高迁移率二维氧化物半导体新发现
半导体材料是电子信息产业的基石。目前,随着晶体管特征尺寸的缩小,由于短沟道效应等物理规律和制造成本的限制,主流硅基材料与CMOS(互补金属氧化物半导体)技术正发展到10纳米工艺节点而很难提升,摩尔定律可能终结。因此,开发新型高性能半导体沟道材料和新原理晶体管技术,是科学界和产业界近20年来的主流研究 ...北京大学通知公告 本站小编 Free考研 2020-04-10信息科学技术学院彭练矛-张志勇教授课题组在《科学》发表5nm碳纳米管CMOS器件研究成果
集成电路发展的基本方式在于,在晶体管尺寸缩减的前提下,研制性能更强大、集成度更高、功能更复杂的芯片。目前,主流CMOS(互补金属氧化物半导体)技术将达到10nm(纳米)的技术节点,后续由于受到来自物理规律和制造成本的限制而很难继续提升,“摩尔定律”可能面临终结。20多年来,科学界和产业界一直在探索各 ...北京大学通知公告 本站小编 Free考研 2020-04-10信息科学技术学院张大庆课题组发表领域旗舰期刊封面文章
2017年1月5日,由北京大学信息科学技术学院、高可信软件技术教育部重点实验室“海外高层次人才引进计划”(即“****”)教授张大庆课题组提出的基于菲涅耳区模型的无线感知新理论,以《迈向厘米级的Wi-Fi人体行为感知》(Towardcentimeter-scalehumanactivitysensi ...北京大学通知公告 本站小编 Free考研 2020-04-10信息科学技术学院张海霞教授课题组成功研制用于健康监测的智能贴片
近日,北京大学信息科学技术学院张海霞教授课题组利用摩擦起电效应与静电感应原理,成功研制可用于健康监测的自驱动无线传输智能贴片。相关研究成果整理为以《用于健康监测的自驱动无线传输智能贴片》(Self-poweredwirelesssmartpatchforhealthcaremonitoring)为题 ...北京大学通知公告 本站小编 Free考研 2020-04-10北大深研院新材料学院与美国阿贡国家实验室联合在《自然·纳米技术》发表电动车动力电池材料综述与展望文章
为了满足社会对于电动车动力电池安全性、续航能力、充电时间等方面的需求,无论是在学术界还是工业界,锂离子电池关键材料的研究一直是具有挑战性的课题。当涉及到设计和构造锂离子电池电极材料的时候,纳米科技以其特殊的优势在提高电池能力密度、功率密度、安全性和稳定性等方面被人类所重视。鉴于上述现状,北京大学深圳 ...北京大学通知公告 本站小编 Free考研 2020-04-10