2017年,北京大学工学院占肖卫课题组在稠环电子受体光伏材料研究中取得系列重要进展,在化学和材料领域著名期刊《美国化学会志》和《先进材料》发表了4篇论文。
有机光伏材料可分为电子给体和电子受体。过去的几年里,有机太阳能电池电子给体材料已取得重大突破,无论是高分子还是小分子电子给体与富勒烯类电子受体共混制备的单结电池效率均超过11%。长期以来,富勒烯衍生物是最广泛使用的电子受体。由于富勒烯受体存在可见区吸收弱、能级调控难、易聚集导致器件稳定性差等缺点,发展高性能的非富勒烯受体是有机太阳能电池领域的挑战性难题。
2015年,占肖卫课题组提出了稠环电子受体新概念,创造了氰基茚酮类芳杂稠环电子受体新体系,设计合成了多种高性能非富勒烯电子受体。与富勒烯受体相比,这些稠环电子受体展示独特优势。2015年,稠环电子受体创造了非富勒烯有机太阳能电池的最高效率(6-7%)(Energy Environ. Sci. 2015, 8, 610-616,被引用140次,ESI热点论文,ESI高被引论文;Adv. Mater. 2015, 27, 1170-1174,被引用240次,ESI热点论文,ESI高被引论文)。2016年,基于稠环电子受体的有机太阳能电池的效率提高到8-10%(J. Am. Chem. Soc. 2016, 138, 2973-2976,被引用100次,ESI热点论文,ESI高被引论文;J. Am. Chem. Soc. 2016, 138, 4955-4961,被引用120次,ESI热点论文,ESI高被引论文)。
2017年,他们创新性地提出了能量驱动器的概念,在基于聚合物给体/稠环电子受体的活性层中加入微量的能量驱动器,使给受体之间的电荷转移驱动力大大增加,太阳能电池的效率由8%提高到10%(Adv. Mater. 2017, 29, 1605126,博士生程沛是第一作者)。他们提出了聚合物给体材料与非富勒烯受体材料的匹配性原则,通过筛选合适的给体材料,使基于稠环电子受体的有机太阳能电池的效率超过11%(Adv. Mater. 2017, 29, 1604155,林禹泽博士是第一作者)。他们设计合成了国际上首个九并稠环电子受体材料,进一步把有机太阳能电池的效率提高到11.5%(J. Am. Chem. Soc. 2017,139 , 1336–1343,博士生代水星是第一作者)。他们还设计合成了基于氟代氰基茚酮的稠环电子受体材料,实现了单结双组分有机太阳能电池的世界最高效率12.1%(Adv. Mater. 2017, 29, 1700144,博士生赵富稳是第一作者)。
占肖卫课题组的原创性工作引起了国内外同行的广泛关注和跟进。国内外数十个课题组使用占肖卫课题组的稠环电子受体。国内外数家公司已开始商业销售占肖卫组发明的稠环电子受体。ITIC等稠环电子受体已成为有机光伏领域的明星分子,氰基茚酮类芳杂稠环电子受体是国际上最好的非富勒烯受体体系。有机光伏领域权威科学家李永舫院士在《中国科学:化学》(2016, 46, 623-624)上以“高性能有机稠环电子受体光伏材料”为题,对占肖卫课题组的工作作了亮点介绍:“国内外多个课题组使用多种中间带隙共轭聚合物给体与这些新型受体匹配制备了高效率聚合物太阳能电池,其中单结电池效率最高可超过11%。这一效率值已达到和超过最好的基于富勒烯受体的器件,充分说明了这些新型受体的广阔应用前景,是具有重要国际影响力的明星受体材料。”“基于非富勒烯受体的有机太阳能电池”在2016年化学与材料科学领域10个热点前沿中排名第一位。中国领跑这个热点前沿,表现了最强的前沿贡献度和前沿引领度。占肖卫课题组在非富勒烯受体领域发表的论文数(60余篇)和论文被引用次数(6000余次)均居本领域首位,10年来一直引领非富勒烯受体领域的发展。
本研究工作得到科技部973计划和国家自然科学基金等的资助。
?占肖卫课题组本科生贾博宇发表的封面文章被选为热点论文
编辑:白杨
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
工学院占肖卫课题组稠环电子受体光伏材料研究取得重要进展
本站小编 Free考研/2020-04-10
相关话题/电子 材料
工学院董蜀湘课题组在磁电复合材料领域取得重要突破
自1961年磁电耦合效应首次在Cr2O3单晶中被发现,磁电复合材料经历了从单相体系发展到两相颗粒复合再到层状多相复合过程。近20年来,基于(1-3)型、(2-1)型、(2-2)型的磁电复合材料获得了广泛研究,但如何进一步提高磁电耦合效应似乎遇到了瓶颈。北京大学工学院董蜀湘课题组近日在磁电复合材料研究 ...北京大学通知公告 本站小编 Free考研 2020-04-10物理学院杨金波、方哲宇和吕劲课题组合作发展出新的谷电子学材料
近日,北京大学物理学院杨金波、方哲宇和吕劲三个课题组开展合作,预测二维的具有蜂窝状原子排布的BNC杂化材料是一类新的具有从紫外拓展到可见光、近红外以及远红外波段的可调能隙的谷电子学材料,并通过实验证实了该体系存在谷极化的现象。相关工作以“ValleyPseudospinwithaWidelyTuna ...北京大学通知公告 本站小编 Free考研 2020-04-10《先进材料》封面文章报道生命科学学院孙育杰课题组超分辨成像新探针
最近20年,超高分辨荧光显微成像的出现打破了光学衍射的极限,使得科学家以空前的视角去探索生物世界,并获得了2014年诺贝尔化学奖。这一技术可分为三类:基于焦点调制的方法如STED,基于单分子定位的方法如PALM/STORM,以及基于荧光探针闪烁特性的统计型超分辨方法如SOFI/3B等。其中,荧光探针 ...北京大学通知公告 本站小编 Free考研 2020-04-10信息学院张海霞教授课题组在多功能电子皮肤研究中取得重要进展
近日,北京大学信息科学技术学院张海霞教授课题组与前沿交叉学科研究院陈东敏教授课题组合作,通过传统压阻传感机制与新型摩擦传感机制的有机结合,实现了在同一器件上同时检测大小、方向不同的弯曲和正压力,大大提升了器件集成度。联合课题组一方面结合海绵材料的多孔特性与碳纳米管的高长宽比特性,设计出特殊的器件结构 ...北京大学通知公告 本站小编 Free考研 2020-04-10北大深研院新材料学院与美国阿贡国家实验室联合在《自然·纳米技术》发表电动车动力电池材料综述与展望文章
为了满足社会对于电动车动力电池安全性、续航能力、充电时间等方面的需求,无论是在学术界还是工业界,锂离子电池关键材料的研究一直是具有挑战性的课题。当涉及到设计和构造锂离子电池电极材料的时候,纳米科技以其特殊的优势在提高电池能力密度、功率密度、安全性和稳定性等方面被人类所重视。鉴于上述现状,北京大学深圳 ...北京大学通知公告 本站小编 Free考研 2020-04-10信息学院吴文刚教授课题组在可调超材料研究中取得重要进展
超材料(meta-material)是可改变其单元结构的形状、分布等,使得电磁参数具有可控性,从而调控其光学性质的人工媒质,目前的主要应用包括隐身衣、超透镜、吸收器等。动态可调超材料作为超材料领域的重要发展方向之一,通过多种方式实现超材料电磁特性的动态调节或重构。其中,基于微纳机电系统(micro/ ...北京大学通知公告 本站小编 Free考研 2020-04-10北大工学院罗莹课题组开发基于纳米电纺丝材料的胰岛支架材料构造“迷你”胰腺
糖尿病是威胁人类健康的重要疾病之一,引起巨大的社会经济负担。其中一型糖尿病起因于机体自身免疫系统攻击胰岛素分泌细胞从而导致胰岛素供应不足,患者因而需要长期进行胰岛素注射治疗。胰岛移植治疗可以稳定控制血糖水平,去除胰岛素注射依赖,减少糖尿病并发症,是未来糖尿病治疗的重要方向之一。2004年加拿大的“埃 ...北京大学通知公告 本站小编 Free考研 2020-04-10北大深圳研究生院新材料学院在锂电池正极材料稳定性研究领域取得重要进展
锂离子电池作为一种清洁能源存储器件,随着其广泛应用于我们的日常生活之中,它的安全问题也越来越受关注,比如最近接连发生的手机充电过程中起火或爆炸等。三元层状材料Li(NixMnyCoz)O2(NMC)(x+y+z=1)具有较高的理论容量,易合成,以及相对较低的价格,是目前应用于锂离子电池最为广泛的正极 ...北京大学通知公告 本站小编 Free考研 2020-04-10北京大学发布Advanced Energy Materials纳米能源材料特刊
2016年9月7日,材料科学领域顶级期刊AdvancedEnergyMaterials在线刊登了北京大学特刊“NanomaterialsforEnergyatPekingUniversity”。该特刊为庆祝北京大学工学院材料科学与工程系(MSE)成立十周年特邀约稿,共收录8篇综述、11篇进展报告和1 ...北京大学通知公告 本站小编 Free考研 2020-04-10北大深圳研究生院新材料学院发表Advanced Energy Materials封面文章
可充电锂离子电池因其具备高的功率密度在能量存储方面扮演着重要角色。锂离子电池面临的一个关键的挑战就是如何同时实现高倍率性能和容量,这对便携式电子设备、电动车以及可再生能源智能电网都有很大的影响。尽管超级电容器能够实现快速充放电,但是与锂离子电池相比,其容量太低同时成本太高。因此提高锂离子电池倍率性能 ...北京大学通知公告 本站小编 Free考研 2020-04-10