删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
北京交通大学理学院导师教师师资介绍简介-郑神州
本站小编 Free考研考试/2020-05-09
郑神州 职称:教授
学历:研究生
学位:博士
电话:-118
邮箱:shzhzheng@bjtu.edu.cn
教育背景
工作经历
研究方向
招生专业
科研项目
教学工作
论文/期刊
专著/译著
专利
软件著作权
获奖与荣誉
社会兼职
教育背景
教育经历:
1994/09-1997/07 复旦大学数学研究所, 博士研究生;
1991/09-1994/07 北京师范大学数学系, 硕士研究生;
研究工作经历:
2017/11-2018/02 西班牙巴斯克应用数学中心合作研究项目,访问Luis Vega教授;
2017/05-2017/07西班牙巴斯克应用数学中心合作研究项目,访问Luis Vega教授(西班牙皇家科学院院士,欧洲科学院院士);
2013/07-2013/08南开大学陈省身数学研究所, 访问教授;
2011/09-2012/09 美国肯塔基大学,芝加哥大学,普渡大学,德克萨斯大学-Arlington分校访问;
2008/02-2008/05 美国University of Texas-Pan American,访问教授;
2007/09-2007/10 南开大学陈省身数学研究所,访问教授;
2005/10-现在北京交通大学理学院 教授
2002/08-2002/12 中国科学院 系统科学研究所,访问;
2001/02-2001/06 中国科学院应用数学研究所,访问;
2000/07-2005/10 北京交通大学理学院 副教授;
1997/07-2000/10北京交通大学理学院 讲师
工作经历
主要研究方向: 偏微分方程理论及应用; 特殊函数和不确定性原理;统计力学和应用 。
近期研究进展:(1)首次将格林函数应用于非线性偏微分方程的正则性研究, 克服了因非线性问题而造成格林函数和基本解应用的困境。 (2)证实Baricz关于修正Bessel函数商函数的严格对数凸性的猜想;解决了Hornik-Grun涉及特殊函数在参数(-1,-1/2)的公开问题。(3) 依据分层材料和电流变力学等物理背景,在弱条件下建立了一系列标准和非标准增长的椭圆和抛物方程问题广义Calderon-Zygmund型理论,使得该理论在多方面得到推进和拓展。(4)建立到Riemann流形上双调和映射能量的量子化,得到奇异点能量的有限泡泡过程; 当目标流形为球面时达到更优结果。
国际知名大学、会议邀请报告:
1)Green functions of a class of degenerate operators with X-ellipticity. U.Texas Pan-American,USA, May, 2008(1小时). 2)Remarks on approximate biharmonic mapsto manifold. Universiy of Kentucky,March, 2012(1小时).
3)Energy identity of approximate biharmonic mapsand application. U. Texas-GRV,April, 2012(1小时).
4)Energy quantization for biharmonic mapsto sphere. 9th AIMS Conf. on Dynamical Systems and Diff.Equations, Orando,July 8, 2012 (30分钟).
5)Calderon-Zygmundtheory for elliptic and parabolic problems with discontinuous coefficients,Basque Center of Applied Mathematics, Bilbao, Spain,June 6, 2017 (1小时)。
在国际知名刊物: Transactions of Amer. Math. Soc., Journal of Functional Analysis, Journal of Differential Equations, Manuscripta Math., Proceedings of Amer. Math. Soc., Discrete Conti. Dyn. Syst. A/B, Nonlinear Analysis A/B, J. Math. Anal. Appl., Mathematische Nachrichten, Complex Variables and Elliptic Equations, Results in Mathematics, Dynamics of Part. Diff. Equ., Elect. Journal Differential Equations, IMA J. Applied Math., Z. angew. Math. Phys., Diff. and Integral Equ., Boundary Value Problems, Comm. Pure Appl. Anal., Mediteranean J. Math., J. Inequal. Appl., Physica A 等发表了130余篇论文,其中SCI为80余篇。
研究方向
运筹学中的统计分析
微分方程理论与应用
招生专业
统计学硕士
应用数学硕士
统计学博士
科研项目
国家自然科学基金“国际合作项目”:调和分析与微分方程, 2016-09-010--2018-01-31, 主持
国家自然科学基金“面上”:抛物和椭圆型方程和方程组的若干问题,2014-01-01--2017-12-31, 主持
北京交通大学: 大西线标准动车组转向架主要部件载荷特性及动应力试验, 2017-2018,参加
铁路总公司(原铁道部),动车组运用维护技术研究——动车组高级修错峰维修计划研究, 2015-06-01--2016-12-31, 参加
中车集团:高速列车车体结构动力模型研究与应用, 2015-08-01--2016-10-31, 主持
国家自然科学基金“面上”:具间断系数非线性退化椭圆问题的正则性研究,2011-01-01--2013-12-31,主持
北京交通大学:北京市轨道交通设施养护质量考评量化指标体系研究,2010-07-20--2010-12-31, 参加
北京交通大学:城市轨道交通系统测试分析,2009-12-21--2010-03-31,参加
北京交通大学:井间三分量地震波场反演,2007-07-01--2009-06-30,参加
国家自然科学基金“面上”:与平均曲率有关的非线性椭圆方程,2007-01-01--2009-12-31, 参加
教育部:面向MIS的预测分析构件的研究与开发,2002-01-01--2003-01-01, 参加
教学工作
讲授本科课程:高等数学、线性代数、几何代数、空间解析几何、复变函数与积分变换、数理方程(复旦版)、偏微分方程(周蜀林主编)、概率论和数理统计、计算方法、运筹学等几乎所有本科课程.
研究生课程:偏微分方程现代理论、Sobolev空间、椭圆偏微分方程、抛物性偏微分方程、数学物理、数值分析、数理统计、场论、特殊函数等课程.
辅导: 北京市高等数学竞赛,大学生数学建模竞赛,发表教学论文6篇,编写教材2部.
论文/期刊
2019
Nonlinear gradient estimates for double phase elliptic problems with irregular double obstacles, Proceedings of AMS,147(9), 2019(with S. Byun and S. Liang)
On W1,γ(·)-regularity for nonlinear non-uniformly elliptic equations,manuscripta math. 159, (2019)(with S. Liang)
Variable Lorentz estimate for conormal derivative problems of stationary Stokes system with partially BMO coefficients, Nonlinear Analysis, 2019, June,https:// doi.org/ 10.1016/j.na.2018.09.014 (with S. Liang)
Weighted Lorentz estimate for asymptotically regular parabolic equations of p(x, t)-Laplaciantype, Nonlinear Analysis, 180 (2019), https://doi.org/ 10.1016/j.na. 2018.10. 013 (with J. Zhang and M. Cai)
Morrey regularity for nonlinear elliptic equations with partial BMO nonlinearities under controlled growth, Nonlinear Analysis,180 (2019) (with H. Tian)
Lorentz estimate with a variable power for parabolic obstacle problems with non-standard growths, Journal of Differential Equations, 266(2019) (with H. Tian)
Variable Lorentz estimate forstationary Stokes system with partially BMO coefficients, Commun. Pure Appl.Anal. 18(6), 2019 (with S. Liang)
Global integrability of very weak solution to the Dirichlet problem of nonlinear elliptic system, Elect. J. Di?erential Equations, Vol. 2019 (2019), No. 1(with Y. Tong and S. Liang)
Nonlinear Complexity and Chaotic Behaviors on Finite-Range Stochastic Epidemic Financial Dynamics, International Journal of Bifurcation and Chaos, 29(6) (2019) (with G. Wang and J. Wang)
Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model, Physica A, 517 (2019)(with G. Wang and J. Wang)
COMPLETE MONOTONICITY AND INEQUALITES INVOLVING GURLAND’S RATIOS OF GAMMA FUNCTIONS,Mathematical Inequalities & Applications, 22(1) (2019)(with Z. Yang)
MONOTONICITY AND INEQUALITIES INVOLVING THE INCOMPLETE GAMMA FUNCTION, Journal of Mathematical Inequalities,13, No 2 (2019)(with H. Lv and Z. Yang)
2018
Lorentz estimates forasymptotically regular fully nonlinear parabolic equations, MathematischeNachrichten, 291(2018) (with J. Zhang)
Variable Lorentz estimate fornonlinear elliptic equations with partially regular nonlinearities, NonlinearAnalysis, 172(2018) (with S. Liang)
Optimal Morrey estimate forparabolic equations in divergence form via Green's functions, Rocky MountainJournal of Mathematics, 48(6)(2018) (with J.Zhang)
Global regularity in Lorentzspaces for nonlinear elliptic equations with L^{p(\cdot)}\log L-growth, Journalof Mathematical Analysis and Applications ,467(2018)(with S. Liang and M. Cai)
Weighted Lorentz andLorentz–Morrey estimates to viscosity solutions of fully nonlinear ellipticequations, Complex Variables and Elliptic Equations, 63(9),2018(with J. Zhang)
Orlicz estimates fornondivergence linear elliptic equations with partially BMO coefficients, Complex Variables and Elliptic Equations, 63(6),2018 (with H. Li and J. Zhang)
Gradient estimate in Orliczspaces for elliptic obstacle problems with partially BMO nonlinearities, Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 58(with S. Liang)
Another approach of Morreyestimate for linear elliptic equations with partially BMO coefficients in ahalf space, Filomat, 32:4 (2018) (with H. Tian)
Weighted Lorentz estimates fornonlinear elliptic obstacle problems with partially regular nonlinearities, Boundary Value Problems, 2018:115 (with H. Tian)
Fuzzy entropy complexity andmultifractal behavior of s tatistical physics financial dynamics, Physica A,506 (2018) (with Y.Wang et al)
Modeling and complexity ofstochastic interacting Lévy type financial price dynamics, Physica A, 499(2018)(with Y. Wang et al)
Monotonicity of the ratio ofmodified Bessel functions of the first kind with applications, Journal ofInequalities and Applications, 2018, Article ID:57(with Z. Yang)
Monotonicity and convexity ofthe ratios of the first kind modified Bessel functions and applications, Mathematical Inequalities and Applications,21(1)(2018)(with Z.Yang)
Sharp Smith’s bounds for the gamma function, Journal of Inequalities and Applications, 2018,Article ID: 27(with X.Li, Z. Liu, Z. Yang)
2017
The monotonicity and convexityfor the ratios of modified Bessel functions of the second kind andapplications. Proceedings of AMS 145 (2017), no. 7(with Z. Yang)
Lorentz estimates for fullynonlinear parabolic and elliptic Equations. Nonlinear Analysis 148 (2017)(with J. Zhang)
Uniformly nondegenerateelliptic equations with partially BMO coefficients in nonsmooth domains. Nonlinear Analysis 156 (2017)(with H.Tian)
Complex and Entropy ofFluctuations of Agent-Based Interacting Financial Dynamics with Random Jump. Entropy 2017, 19, 512 (With Y. Wang, W. Zhang and J. Wang)
Lorentz estimates for thegradient of weak solutions to elliptic obstacle problems with partially BMOcoefficients, Boundary Value Problems, 2017(withH.Tian)
Global weighted Lorentzestimates to nonlinear parabolic equations over nonsmooth domains, J. Math.Anal. Appl. 456 (2017)(H.Tian)
Sharp bounds for the ratio ofmodified Bessel functions, Mediterr. J. Math. (2017) 14:169 (with Z. Yang)
New sharp approximationsinvolving incomplete gamma functions, Results in Math.,72( 2017)(withT. Lou, H. Lv, Z.Yang)
Lorentz estimates forasymptotically regular fully nonlinear elliptic equations, Electron. J. Differential Equations, Vol.2017 (2017), No. 120(Y.Wang and J.Zhang)
Sharp inequalities for tangentfunction with applications. J. Inequal. Appl. 2017, Paper No. 94, 17 pp(with H.Lv, Z.Yang,T. Lou)
Weighted Lorentz estimates fornondivergence linear elliptic equations with partially BMO coefficients.Commun. Pure Appl. Anal.16 (2017) no. 3(with J. Zhang)
2016
H?lder continuity tosubelliptic A-harmonic equations under the natural growth.(Chinese) Acta Math.Appl. Sin. 39 (2016), no. 5, 689–700(with H. Yu and J. Wang)
Yang, Zhen-Hang; Zheng,Shen-Zhou Monotonicity of a mean related to polygamma functions with anapplication. J. Inequal. Appl. 2016, 2016:216, 10 pp
Sun, Bang-Cheng; Liu, Zhi-Ming;Li, Qiang; Zheng, Shen-Zhou Lp-estimates for quasilinear subelliptic equationswith VMO coefficients under the controllable growth. Bound. Value Probl. 2016,2016:148, 18 pp
Zhang, Junjie; Zheng, ShenzhouLorentz estimates for asymptotically regular elliptic equations in quasiconvexdomains. Electron. J. Differential Equations 2016, Paper No. 142, 13 pp
Sun, Bang-Cheng; Liu, Zhi-Ming;Li, Qiang; Zheng, Shen-Zhou The monotonicity and convexity of a functioninvolving psi function with applications. J. Inequal. Appl. 2016, 2016:151, 17pp
Zheng, Shenzhou A compactnessresult for polyharmonic maps in the critical dimension. Czechoslovak Math. J. 66(141) (2016), no. 1.
Cheng, Cui-Ping; Li, Wan-Tong;Wang, Zhi-Cheng;Zheng, Shenzhou Traveling waves connecting equilibrium andperiodic orbit for a delayed population model on a two-dimensional spatiallattice. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 26 (2016), no. 3, **,13 pp
Yu, Haiyan; Zheng, ShenzhouMorrey estimates for subelliptic p-Laplace type systems with VMO coefficientsin Carnot groups.Electron. J. Differential Equations 2016, Paper No. 33, 14pp
Zhang, Junjie; Zheng, ShenzhouLorentz estimate for nonlinear parabolic obstacle problems with asymptoticallyregular nonlinearities. Nonlinear Analysis 134 (2016)
Yu, Haiyan; Zheng, Shenzhou;Tong, Yuxia An alternative approach to partial regularity of quasilinearelliptic systems with VMO coefficients. J. Inequal. Appl. 2016, 2016:20.
2015
Zheng, Shenzhou; Feng,Zhaosheng, Regularity of subelliptic p -harmonic systems with subcritical growth in Carnot group. J.Differential Equations 258 (2015), no. 7.
Zheng, Shenzhou A strongconvergence of the weak gradient to A-harmonic type operators with L1 data. J.Math. Anal. Appl. 430(2015), no. 1.
Tong, Yu Xia; Zheng, Shen Zhou;Yu, Hai Yan, Local H?lder continuity of the gradients of weak solutions toA-harmonic equation with variable exponents. (Chinese) Acta Math. Sci. Ser. AChin. Ed. 35 (2015),no. 4.
Yu, Haiyan; Zheng, Shenzhou, BMOestimate to A-harmonic systems with discontinuous coefficients. Nonlinear Anal.Real World Appl. 26 (2015).
Zheng, Shen Zhou, A local H?lderestimate of (K1,K2)-quasiconformal mappings between hypersurfaces. Acta Math.Sin. (Engl. Ser.)31 (2015), no. 9.
Zhang, Jinjie; Zheng, Shenzhou, On refined Hardy-Knopp type inequalities in Orlicz spaces and some relatedresults. J. Inequal. Appl. 2015, 2015:169.
Yu, Haiyan; Zheng, Shenzhou, Optimal partial regularity for quasilinear elliptic systems with VMOcoefficients based on A-harmonic approximations. Electron. J. DifferentialEquations 2015, No. 16.
2014年以前
Wang, Jie; Yu, Hai Yan; Zheng,Shen Zhou Interior H?lder estimate to semilinear subelliptic equations underthe natural growth. (Chinese) Acta Math. Sci. Ser. A Chin. Ed. 34 (2014), no.6, 1397–1407
Tong, Yuxia; Zheng, Shenzhou;Gu, Jiantao Higher integrability for very weak solutions of inhomogeneousA -harmonic form equations. J. Appl.Math. 2014, Art. ID 308751, 9 pp
Tong, Yuxia; Gu, Jiantao;Zheng, Shenzhou Zeros for the gradients of weakly A -harmonic tensors. J. Appl.Math. 2014, Art. ID 231248, 5 pp
Rao, Jie Sheng; Zheng, ShenZhou Self-improving regularity of weakly quasiregular mappings in Heisenberggroups. (Chinese) Chinese Ann. Math. Ser. A 34 (2013), no. 5, 579–588
Zheng, Shenzhou Energyquantization for approximate H-surfaces and applications. Electron. J.Differential Equations 2013, No. 177, 13 pp
Wang, Changyou; Zheng, ShenzhouEnergy identity for a class of approximate biharmonic maps into sphere in dimensionfour. Discrete Contin. Dyn. Syst. 33 (2013), no. 2, 861–878
Zheng, Shen Zhou Regularity ofa class of degenerate elliptic equations with discontinuous coefficients undercontrollable growth. (Chinese) J.Systems Sci. Math. Sci. 32 (2012), no. 5, 549–561
Zheng, Shen Zhou; Lu, Han FangLiouville theorems on subelliptic quasilinear equations in unbounded exteriordomain. (Chinese) Acta Math. Sci. Ser. AChin. Ed. 32 (2012), no. 4, 644–653
Zheng, Shenzhou Weakcompactness of biharmonic maps. Electron. J. Differential Equations 2012, No.190, 7 pp
Feng, Zhaosheng; Tian, Jing;Zheng, Shenzhou; Lu, Hanfang Travelling wave solutions of the Burgers-Huxleyequation. IMA J. Appl. Math. 77 (2012),no. 3, 316–325
Wang, Changyou; Zheng, ShenzhouEnergy identity of approximate biharmonic maps to Riemannian manifolds and itsapplication. J. Funct. Anal. 263 (2012),no. 4, 960–987
Zheng, Shenzhou; Feng,Zhaosheng Green functions for a class of nonlinear degenerate operators withX-ellipticity. Trans. Amer. Math. Soc. 364 (2012), no. 7, 3627–3655
Gao, Hong-Ya; Zheng, Shen-Zhou;Yue, Ying-Qiang Beltrami system with two characteristic matrices and variablecoefficients. Boundary value problems, integral equations and related problems,170–178, World Sci. Publ., Hackensack, NJ, 2011
Zheng, Shenzhou; Zheng,Xueliang; Feng, Zhaosheng Optimal regularity for A -harmonic type equationsunder the natural growth. Discrete Contin. Dyn. Syst. Ser. B 16 (2011), no. 2,669–685
Wang, Chun Hua; Zheng, ShenZhou Lp,λ -regularity for a class of degenerate elliptic equations withdiscontinuous coefficients. (Chinese) J. Systems Sci. Math. Sci. 30 (2010), no.2, 157–172
Zheng, Shen Zhou; Lu, Han FangAn application of the Green function to the interior H?lder continuity of weaksolutions to X -elliptic equations. (Chinese) Chinese Ann. Math. Ser. A 31(2010), no. 3, 295–304
Zheng, Shen Zhou; Wang, Xi FenRegularity of very weak solutions for a class of quasilinear subellipticequations. (Chinese) Acta Math. Sci. Ser. A Chin. Ed. 30 (2010), no. 2,432–439
Lu, Han Fang; Zheng, Shen ZhouThe Green function method for the H?lder continuity of elliptic equations indivergence form. (Chinese) Acta Math. Sci. Ser. A Chin. Ed. 29 (2009), no. 5,1160–1166
Feng, Zhaosheng; Zheng,Shenzhou; Gao, David Y. Traveling wave solutions to a reaction-diffusionequation. Z. Angew. Math. Phys. 60 (2009), no. 4, 756–773
Wang, Yuandi; Zheng, ShengzhouThe existence and behavior of solutions for nonlocal boundary problems. Bound.Value Probl. 2009, Art. ID 484879, 17 pp
Feng, Zhaosheng; Zheng,Shenzhou; Lu, Hanfang Green's function of non-linear degenerate ellipticoperators and its application to regularity. Differential Integral Equations 21(2008), no. 7-8, 717–741
Zheng, Shen Zhou; Zhang, LaPing Everywhere interior regularity for p -harmonic form systems with thesubcritical growth. (Chinese) Acta Math. Sinica (Chin. Ser.) 51 (2008), no. 5,1001–1014
Zheng, Shen Zhou Regularity forquasi-linear degenerate elliptic equations with VMO coefficients. Acta Math.Sin. (Engl. Ser.) 24 (2008), no. 11, 1909–1924
Zheng, Xue Liang; Zheng, ShenZhou Sharp H?lder exponents for nonlinear degenerate elliptic equations withnatural growth. (Chinese) Acta Math. Sinica (Chin. Ser.) 51 (2008), no. 4,735–748
Zheng, Shen Zhou; Zhao, Shu LeFull regularity of $p$ -harmonic type systems below the critical growth.(Chinese) Acta Math. Sci. Ser. A Chin. Ed. 28 (2008), no. 3, 480–488
Zheng, Shenzhou; Zheng,Xueliang; Feng, Zhaosheng Regularity for a class of degenerate ellipticequations with discontinuous coefficients under natural growth. J. Math. Anal.Appl. 346 (2008), no. 2, 359–373
Zheng, S.; Feng, Z. Regularityfor quasi-linear elliptic systems with discontinuous coefficients. Dyn. PartialDiffer. Equ. 5 (2008), no. 1, 87–99
Zheng, Shen Zhou Partialregularity for quasi-linear elliptic systems with VMO coefficients under thenatural growth. (Chinese) Chinese Ann. Math. Ser. A 29 (2008), no. 1, 49--58;translation in Chinese J. Contemp. Math. 29 (2008), no. 1, 55–64
Zheng, Shenzhou; Zhang, Laping;Feng, Zhaosheng Everywhere regularity for $p$ -harmonic type systems under thesubcritical growth. Commun. Pure Appl. Anal. 7 (2008), no. 1, 107–117
Zhao, Shu Le; Zheng, Shen Zhou$L^{2,\lambda}$ -regularity for a quasilinear elliptic equation with VMOcoefficients. (Chinese) Acta Math. Sinica (Chin. Ser.) 50 (2007), no. 1,17–24
Zheng, Shen Zhou; Zhao, Shu LeRegularity for $p$ -harmonic type systems with the gradients below thecontrollable growth. Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 6,1757–1766
Zheng, Xue Liang; Zheng, ShenZhou Another proof of the Lehtinen theorem. (Chinese) J. Shanghai JiaotongUniv. (Chin. Ed.) 39 (2005), no. 10, 1737–1740
Zheng, Shenzhou; Kang, XiuyingThe comparison of Green function for quasi-linear elliptic equation. Acta Math.Sci. Ser. B Engl. Ed. 25 (2005), no. 3, 470–480
Zheng, Shen Zhou The regularityof weakly quasiregular mappings in $\Bbb R^n$ . (Chinese) Chinese Ann. Math.Ser. A 25 (2004), no. 6, 799–804
Zheng, Shen Zhou Regularityresults for the generalized Beltrami system. Acta Math. Sin. (Engl. Ser.) 20(2004), no. 2, 293–304
Zheng, Shen-zhou Removablesingularities of solutions of $A$ -harmonic type equations. Acta Math. Appl.Sin. Engl. Ser. 20 (2004), no. 1, 115–122
Zheng, Xue Liang; Zheng, ShenZhou Riemann-Hilbert problem for N -analytic functions. (Chinese) J. Math.Study 34 (2001), no. 3, 292–297
Zheng, Shen Zhou; Zheng, XueLiang Bianalytic functions, biharmonic functions and elastic problems in theplane. Appl. Math. Mech. (English Ed.) 21 (2000), no. 8, 885–892; translatedfrom Appl. Math. Mech. 21 (2000), no. 8, 797--802
Zheng, Shen Zhou; Fang, Ai NongRegularity of very weak solutions for a class of nonlinear elliptic systems.(Chinese) Acta Math. Sinica (Chin. Ser.) 42 (1999), no. 1, 119–124
Zheng, Shenzhou Lp-integrability for p -quasiconformal homeomorphisms. J. Shanghai Jiaotong Univ.(Engl. Ed.) 3 (1998), no. 1, 10–13
Zheng, Shenzhou; Fang, AinongRegularity of very weak solutions for a class of nonlinear elliptic systems.Acta Math. Sinica (N.S.) 14 (1998), suppl., 733–740
Zheng, Shen Zhou; Fang, Ai NongDegenerate quasiregular mappings. (Chinese) Chinese Ann. Math. Ser. A 19(1998), no. 6, 741–748
Zheng, Shen Zhou; Fang, Ai NongLp -integrability of (K1,K2) -quasiregular mappings. (Chinese) Acta Math.Sinica (Chin. Ser.) 41 (1998), no. 5, 1019–1024
Zheng, Shen Zhou Partialregularity of A -harmonic systems of equations and quasiregular mappings.(Chinese) Chinese Ann. Math. Ser. A 19 (1998), no.1, 63--72; translation inChinese J. Contemp. Math. 19 (1998), no. 1, 19–32
Zheng,Shen Zhou Beltrami systems with double characteristic matrices and quasiregularmappings. (Chinese) Acta Math. Sinica (Chin. Ser.) 40 (1997), no. 5, 745–750.
专著/译著
亓健,朱东鸣, 郑神州. 高等数学(上下册)[M]. 国内:中国石油大学出版社, 2009-03
龚漫奇, 邓小琴, 郑神州, 赵生变, 王秋媛, 缪克英, 吴灵敏, 黎传琦. 高等数学习题教程(上、下册)[M]. 科学出版社,2000-12
专利
软件著作权
获奖与荣誉
1998年北京市优秀青年骨干教师称号;
2014年参加的项目< 动车组检修计划优化关键技术及应用>获中国铁道学会科技二等奖。
社会兼职
美国数学会《数学评论》(Mathematics Reviews)评论员;
国家自然科学基金项目、高等院校科学技术奖、霍英东基金、国家自然基金、中国博士后基金、博士点基金、北京市自然基金、浙江省自然基金等网评专家;
教育部学位办博、硕士学位论文通讯评论专家;
专业国际知名期刊如:Commun. Part. Diff.Equ.,Commun. Nonlinear Sci. Numer. Simulat., JMAA, Science in China等评审专家.
相关话题/理学院 北京交通大学
北京交通大学理学院导师教师师资介绍简介-刘明惠
刘明惠 职称:讲师 学历:研究生 学位:博士 电话: 邮箱:mhliu@bjtu.edu.cn ...北京交通大学师资导师 本站小编 Free考研考试 2020-05-09北京交通大学理学院导师教师师资介绍简介-周君灵
周君灵 职称:教授 学历:研究生 学位:博士 电话: 邮箱:jlzhou@bjtu.edu.cn ...北京交通大学师资导师 本站小编 Free考研考试 2020-05-09北京交通大学理学院导师教师师资介绍简介-冯国臣
冯国臣 职称:副教授 学历:研究生 学位:硕士 电话: 邮箱:gcfeng@bjtu.edu.cn ...北京交通大学师资导师 本站小编 Free考研考试 2020-05-09北京交通大学理学院导师教师师资介绍简介-朱圣芝
朱圣芝 职称:副教授 学历:研究生 学位:博士 电话:**-218 邮箱:shzhzhu@bjtu.edu.cn ...北京交通大学师资导师 本站小编 Free考研考试 2020-05-09北京交通大学理学院导师教师师资介绍简介-王兵团
王兵团 职称:教授 学历:研究生 学位:硕士 电话: 邮箱:btwang@bjtu.edu.cn ...北京交通大学师资导师 本站小编 Free考研考试 2020-05-09北京交通大学理学院导师教师师资介绍简介-付俐
付俐 职称:副教授 学历:研究生 学位:博士 电话: 邮箱:lfu@bjtu.edu.cn ...北京交通大学师资导师 本站小编 Free考研考试 2020-05-09北京交通大学理学院导师教师师资介绍简介-刘迎东
刘迎东 职称:副教授 学历:研究生 学位:博士 电话: 邮箱:ydliu@bjtu.edu.cn ...北京交通大学师资导师 本站小编 Free考研考试 2020-05-09北京交通大学理学院导师教师师资介绍简介-常彦勋
常彦勋 职称:教授 学历:研究生 学位:博士 电话:** 邮箱:yxchang@bjtu.edu.cn ...北京交通大学师资导师 本站小编 Free考研考试 2020-05-09北京交通大学理学院导师教师师资介绍简介-缪克英
缪克英 职称:副教授 学历:研究生 学位:硕士 电话: 邮箱:kymiao@bjtu.edu.cn ...北京交通大学师资导师 本站小编 Free考研考试 2020-05-09北京交通大学理学院导师教师师资介绍简介-任丽伟
任丽伟 职称:副教授 学历:研究生 学位:博士 电话: 邮箱:lwren@bjtu.edu.cn ...北京交通大学师资导师 本站小编 Free考研考试 2020-05-09