删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

On the rate of convergence of the Legendre spectral collocation method for multi-dimensional nonline

本站小编 Free考研考试/2022-01-02

Nermeen A Elkot1, Mahmoud A Zaky,2, Eid H Doha1, Ibrahem G Ameen31Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
2Department of Applied Mathematics, National Research Centre, Dokki, Cairo 12622, Egypt
3Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypt

First author contact: *Author to whom any correspondence should be addressed.
Received:2020-07-22Revised:2020-11-12Accepted:2020-11-18Online:2021-01-25


Abstract
While the approximate solutions of one-dimensional nonlinear Volterra-Fredholm integral equations with smooth kernels are now well understood, no systematic studies of the numerical solutions of their multi-dimensional counterparts exist. In this paper, we provide an efficient numerical approach for the multi-dimensional nonlinear Volterra-Fredholm integral equations based on the multi-variate Legendre-collocation approach. Spectral collocation methods for multi-dimensional nonlinear integral equations are known to cause major difficulties from a convergence analysis point of view. Consequently, rigorous error estimates are provided in the weighted Sobolev space showing the exponential decay of the numerical errors. The existence and uniqueness of the numerical solution are established. Numerical experiments are provided to support the theoretical convergence analysis. The results indicate that our spectral collocation method is more flexible with better accuracy than the existing ones.
Keywords: spectral collocation method;convergence analysis;multi-dimensional integral equations


PDF (692KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Nermeen A Elkot, Mahmoud A Zaky, Eid H Doha, Ibrahem G Ameen. On the rate of convergence of the Legendre spectral collocation method for multi-dimensional nonlinear Volterra-Fredholm integral equations. Communications in Theoretical Physics, 2021, 73(2): 025002- doi:10.1088/1572-9494/abcfb3

1. Introduction

In practical applications, one frequently encounters the multi-dimensional nonlinear Volterra-Fredholm integral equation of the form$\begin{eqnarray}\begin{array}{rcl}\phi ({t}_{1},\ldots ,{t}_{d}) & = & {\displaystyle \int }_{0}^{1}\cdots {\displaystyle \int }_{0}^{1}{k}_{1}({t}_{1},{r}_{1},\ldots ,{t}_{d},{r}_{d})\\ & & \times f\left(\phi ({r}_{1},\ldots ,{r}_{d})\right){\rm{d}}{r}_{d}\cdots {\rm{d}}{r}_{1}\\ & & +{\displaystyle \int }_{0}^{{t}_{1}}\cdots {\displaystyle \int }_{0}^{{t}_{d}}{k}_{2}({t}_{1},{s}_{1},\ldots ,{t}_{d},{s}_{d})g\\ & & \times \left(\phi ({s}_{1},\ldots ,{s}_{d})\right){\rm{d}}{s}_{d}\cdots {\rm{d}}{s}_{1}\\ & & +y({t}_{1},\ldots ,{t}_{d}),\end{array}\end{eqnarray}$where φ(t1, t2,...,td) is the unknown function, $f,g:D\to {\mathbb{R}}$ where $D:= \{\left({s}_{1},\ldots {s}_{d}\right):0\leqslant {s}_{i}\leqslant 1,i=1,\ldots ,d\}$ satisfy the Lipschitz condition with respect to φ; y(t1, t2,…,td), k1(t1, r1,…,td, rd) and k2(t1, s1,…,td, sd) are given continuous functions. The multi-dimensional Volterra-Fredholm nonlinear integral equations arise in many physics, chemistry, biology and engineering applications, and they provide a vital tool for modeling many problems. Particular cases of such nonlinear integral equations arise in the mathematical design of the temporal-spatio development of an epidemic [1-4]. They also appear in the theory of porous filtering, antenna problems in electromagnetic theory, fracture mechanics, aerodynamics, in the quantum effects of electromagnetic fields in the black body whose interior is filled by Kerr nonlinear crystal.

During the last decade, many numerical schemes have been developed for the one- and two-dimensional version of the nonlinear Volterra-Fredholm integral equations [5-16]. However, the studies on analysis and derivation of numerical schemes for the multi-dimensional nonlinear integral equations are still limited. Mirzaee and Hadadiyan [17] solved the second kind three-dimensional linear Volterra-Fredholm integral equations using the modified block-pulse functions. Wei et al [18] studied the convergence analysis of the Chebyshev collocation method for approximating the solution of the second kind multi-dimensional nonlinear Volterra integral equation with a weakly singular kernel. Pan et al [19] developed a quadrature method based on multi-variate Bernstein polynomials for approximating the solution of multi-dimensional Volterra integral equations. Sadri et al [20] constructed an operational approach for linear and nonlinear three-dimensional Fredholm, Volterra, and mixed Volterra-Fredholm integral equations. Liu et al [21] proposed two interpolation collocation methods for solving the second kind nonlinear multi-dimensional Fredholm integral equations utilizing the modified weighted Lagrange and the rational basis functions. Assari et al [22] presented a discrete radial basis functions collocation scheme based on scattered points for solving the second kind two-dimensional nonlinear Fredholm integral equations on a non-rectangular domain. Wei et al [23] provided a spectral collocation scheme for multi-dimensional linear Volterra integral equation with a smooth kernel. Wei et al [24, 25] studied the convergence analysis of the Jacobi spectral collocation schemes for the numerical solution of multi-dimensional nonlinear Volterra integral equations. Doha et al [26] proposed Jacobi-Gauss-collocation scheme for approximating the solution of Fredholm, Volterra, and systems of Volterra-Fredholm integral equations with initial and nonlocal boundary conditions. Zaky and Hendy [27] developed and analyzed a spectral collocation scheme for a class of the second kind nonlinear Fredholm integral equations in multi-dimensions. Zaky and Ameen [28]developed Jacobi spectral collocation scheme for solving the second kind multi-dimensional integral equations with non-smooth solutions and weakly singular kernels.

Solving multi-dimensional Volterra-Fredholm integral equations is much more challenging than low-dimensional problems due to dimension effect, especially those are nonlinear. The main purpose of this paper is to propose and analyze a Legendre spectral collocation method for multi-dimensional nonlinear Volterra-Fredholm integral equations. Compared to Galerkin spectral methods, spectral collocation methods are more flexible to deal with complicated problems, especially those are nonlinear. We get the discrete scheme by using multi-variate Gauss quadrature formula for the integral term. We provide theoretical estimates of exponential decay for the errors of the approximate solutions. Moreover, we establish the existence and uniqueness of the numerical solution.

The paper is organized as follows. In the following section, we investigate the existence and uniqueness of the solution to equation (1.1). In section 3, we state some preliminaries and notation. The spectral collocation discretization of (1.1) is given in section 4. In section 5, the rate of convergence of the proposed scheme is derived. In section 6, we investigate the existence of the numerical solution. In section 7, we investigate the uniqueness of the numerical solution. The numerical experiments are performed in section 7 illustrating the performance of our scheme. We conclude the paper with some discussions in section 8.

2. Existence and uniqueness of the solution

In this section, we prove the existence and uniqueness of solution to (1.1). The L- norm is defined as$\begin{eqnarray*}\begin{array}{l}\parallel \phi {\parallel }_{\infty }=\ \mathrm{ess}\ \ \sup \ \{| \phi ({t}_{1},\ldots ,{t}_{d})| ,\\ ({t}_{1},\ldots ,{t}_{d})\in {I}^{d}:= [0,1]\times [0,1]...[0,1]\}.\end{array}\end{eqnarray*}$For sake of simplicity, we rewrite equation (1.1) as φ = Tφ, where$\begin{eqnarray*}\begin{array}{l}(T\phi )({t}_{1},\ldots ,{t}_{d})=y({t}_{1},\ldots ,{t}_{d})\\ +\,{\displaystyle \int }_{0}^{1}\cdots {\displaystyle \int }_{0}^{1}{k}_{1}({t}_{1},{r}_{1},\ldots ,{t}_{d},{r}_{d})f\left(\phi ({r}_{1},\ldots ,{r}_{d})\right){\rm{d}}{r}_{d}\cdots {\rm{d}}{r}_{1}\\ +\,{\displaystyle \int }_{0}^{{t}_{1}}\cdots {\displaystyle \int }_{0}^{{t}_{d}}{k}_{2}({t}_{1},{s}_{1},\ldots ,{t}_{d},{s}_{d})g\left(\phi ({s}_{1},\ldots ,{s}_{d})\right){\rm{d}}{s}_{d}\cdots {\rm{d}}{s}_{1},\end{array}\end{eqnarray*}$and consider the following assumptions:(T1) yL(Id).
(T2) ${k}_{i}\in {L}^{\infty }({I}^{d}\times {I}^{d}),{M}_{i}={\parallel {k}_{i}\parallel }_{\infty },i=1,2.$
(T3)${d}_{1}={\sup }_{({t}_{1},\ldots ,{t}_{d})\in {I}^{d}}| f(0)| \lt \infty $, ${d}_{2}={\sup }_{({t}_{1},\ldots ,{t}_{d})\in {I}^{d}}| g(0)| \lt \infty ,$ and the nonlinear functions f, g satisfy the Lipschitz conditions $\begin{eqnarray*}\begin{array}{l}| f({\phi }_{1})-f({\phi }_{2})| \leqslant {L}_{1}| {\phi }_{1}-{\phi }_{2}| ,\quad | g({\phi }_{1})-g({\phi }_{2})| \\ \quad \leqslant \,{L}_{2}| {\phi }_{1}-{\phi }_{2}| ,\quad ({t}_{1},\ldots ,{t}_{d})\in {I}^{d},{\phi }_{1},{\phi }_{2}\in {\mathbb{R}},\end{array}\end{eqnarray*}$where L1 and L2 are non-negative real constants.
(T4) ${\sum }_{i=1}^{2}{M}_{i}\,{L}_{i}\lt 1.$


If the assumptions (T1)-(T4) are satisfied, then equation (1.1) admits a unique solution in ${L}^{\infty }({I}^{d})$.

Let $\phi \in {L}^{\infty }({I}^{d})$. Then, we deduce from the assumptions $({T}_{1})-({T}_{3})$ that$\begin{eqnarray*}\begin{array}{l}| (T\phi )({t}_{1},\ldots ,{t}_{d})| \leqslant | y({t}_{1},\ldots ,{t}_{d})| \\ +\,{\displaystyle \int }_{0}^{1}\cdots {\displaystyle \int }_{0}^{1}| {k}_{1}({t}_{1},{r}_{1},\ldots ,{t}_{d},{r}_{d})| | f\left(\phi ({r}_{1},\ldots ,{r}_{d})\right)| \,{\rm{d}}{r}_{d}\cdots {\rm{d}}{r}_{1}\\ +\,{\displaystyle \int }_{0}^{{t}_{1}}\cdots {\displaystyle \int }_{0}^{{t}_{d}}| {k}_{2}({t}_{1},{s}_{1},\ldots ,{t}_{d},{s}_{d})| | g\left(\phi ({s}_{1},\ldots ,{s}_{d})\right)| \,{\rm{d}}{s}_{d}\cdots {\rm{d}}{s}_{1}\\ \leqslant \,| y({t}_{1},\ldots ,{t}_{d})| +{\displaystyle \int }_{0}^{1}\cdots {\displaystyle \int }_{0}^{1}| {k}_{1}({t}_{1},{r}_{1},\ldots ,{t}_{d},{r}_{d})\\ \times \,| | f\left(\phi ({r}_{1},\ldots ,{r}_{d})\right)-f\left(0)\right)| | \,{\rm{d}}{r}_{d}\cdots {\rm{d}}{r}_{1}\\ +\,{\displaystyle \int }_{0}^{1}\cdots {\displaystyle \int }_{0}^{1}| {k}_{1}({t}_{1},{r}_{1},\ldots ,{t}_{d},{r}_{d})| | f\left(0)\right)| \,{\rm{d}}{r}_{d}\cdots {\rm{d}}{r}_{1}\\ +\,{\displaystyle \int }_{0}^{{t}_{1}}\cdots {\displaystyle \int }_{0}^{{t}_{d}}| {k}_{2}({t}_{1},{s}_{1},\ldots ,{t}_{d},{s}_{d})| | g\left(\phi ({s}_{1},\ldots ,{s}_{d})\right)\\ -\,g\left(0)\right)| | \,{\rm{d}}{s}_{d}\cdots {\rm{d}}{s}_{1}\\ +\,{\displaystyle \int }_{0}^{{t}_{1}}\cdots {\displaystyle \int }_{0}^{{t}_{d}}| {k}_{2}({t}_{1},{s}_{1},\ldots ,{t}_{d},{s}_{d})| | g\left(0)\right)| \,{\rm{d}}{s}_{d}\cdots {\rm{d}}{s}_{1}\\ \leqslant \,{\parallel y\parallel }_{\infty }+\displaystyle \sum _{n=1}^{2}{M}_{n}\left({L}_{n}{\parallel \phi \parallel }_{\infty }+{d}_{n}\right)\lt \infty ,\quad ({t}_{1},\ldots ,{t}_{d})\in {I}^{d}.\end{array}\end{eqnarray*}$Hence, ${\parallel T\phi \parallel }_{\infty }\lt \infty $ and the operator T map ${L}^{\infty }({I}^{d})$ to ${L}^{\infty }({I}^{d})$. Consequently, it follows directly from the assumptions $(T2)-(T4)$ that the operator T is a contraction$\begin{eqnarray*}\parallel T\phi -{Tv}{\parallel }_{\infty }\leqslant \sum _{n=1}^{2}{M}_{n}{L}_{n}\parallel \phi -v{\parallel }_{\infty }.\end{eqnarray*}$Thus, the proof follows directly from the Banach fixed point theorem. □

3. Multi-variate Legendre-Gauss interpolation

In this section, we provide some properties of the Legendre polynomials.Let ${{ \mathcal P }}_{N}$ be the space of polynomials of degree at most N in Ω, where Ω $:= $ ( − 1, 1) and Ωd $:= $ ( − 1, 1)d.
Let ωμ,ν(y) = (1 − y)μ(1 + y)ν be a non-negative weight function defined in Ω and corresponding to the Jacobi parameters μ, ν > − 1.
Let ${\mathbb{R}}$ be the set of all real numbers, ${\mathbb{N}}$ be the set of all non-negative integers, and ${{\mathbb{N}}}_{0}={\mathbb{N}}\cup 0$.
The lowercase boldface letters denotes d-dimensional vectors and multi-indexes, e.g. ${\boldsymbol{j}}=({j}_{1},\ldots ,{j}_{d})\in {{\mathbb{N}}}_{0}^{d}$ and ${\boldsymbol{b}}=({b}_{1},\ldots ,{b}_{d})\in {{\mathbb{R}}}^{d}$. We denote by ek = (0,…,1,…,0) the kth unit vector in ${{\mathbb{R}}}^{d}$ and ${\bf{1}}=(1,1,\ldots ,1)\in {{\mathbb{N}}}^{d}$. For a constant $c\in {\mathbb{R}}$, we introduce the following operations: $\begin{eqnarray*}\begin{array}{l}{\boldsymbol{a}}+{\boldsymbol{b}}=({a}_{1}+{b}_{1},\ldots ,{a}_{d}+{b}_{d}),\\ {\boldsymbol{a}}+c:= {\boldsymbol{a}}+c{\bf{1}}=({a}_{1}+c,\ldots ,{a}_{d}+c),\end{array}\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{l}{\boldsymbol{a}}\geqslant {\boldsymbol{b}}\iff {\forall }_{1\leqslant i\leqslant d}\ {a}_{i}\geqslant {b}_{i};\\ {\boldsymbol{a}}\geqslant c\iff {\boldsymbol{a}}\geqslant c{\bf{1}}\iff {\forall }_{1\leqslant i\leqslant d}\ {a}_{i}\geqslant c.\end{array}\end{eqnarray*}$
We define $\begin{eqnarray*}\begin{array}{l}{\left|{\boldsymbol{q}}\right|}_{1}=\displaystyle \sum _{i=1}^{d}{q}_{i},{\left|{\boldsymbol{q}}\right|}_{\infty }=\mathop{\max }\limits_{1\leqslant i\leqslant d}{q}_{i},\prod {\boldsymbol{x}}{{\boldsymbol{y}}}^{{\boldsymbol{z}}}=\prod _{i=1}^{d}{x}_{i}{y}_{i}^{{z}_{i}},\\ {\displaystyle \int }_{{\boldsymbol{p}}}^{{\boldsymbol{q}}}g({\boldsymbol{x}}){\rm{d}}{\boldsymbol{x}}={\displaystyle \int }_{{p}_{1}}^{{q}_{1}}\cdots {\displaystyle \int }_{{p}_{d}}^{{q}_{d}}g({x}_{1},\cdots ,{x}_{d})\ {\rm{d}}{x}_{d}\cdots {\rm{d}}{x}_{1}.\end{array}\end{eqnarray*}$
Given a multi-variate function φ(z), we define the qth partial (mixed) derivative as $\begin{eqnarray*}{{\boldsymbol{\partial }}}_{{\boldsymbol{z}}}^{{\boldsymbol{q}}}\phi =\displaystyle \frac{{\partial }^{{\left|{\boldsymbol{q}}\right|}_{1}}\phi }{{\partial }_{{z}_{1}}^{{q}_{1}}\cdots {\partial }_{{z}_{d}}^{{q}_{d}}}={\partial }_{{z}_{1}}^{{q}_{1}}\cdots {\partial }_{{z}_{d}}^{{q}_{d}}\phi .\end{eqnarray*}$
The set of Legendre polynomials $\left\{{{L}}_{n}(y)\right\}$ forms a complete orthogonal system in L2(Ω), i.e.$\begin{eqnarray*}{\int }_{{\rm{\Omega }}}{{L}}_{n}(y){{L}}_{m}(y){\rm{d}}y={\alpha }_{n}{\delta }_{n,m},\end{eqnarray*}$where δm,n is the Kronecker symbol and$\begin{eqnarray*}{\alpha }_{n}=\displaystyle \frac{2}{2n+1}.\end{eqnarray*}$The d-dimensional Legendre polynomial is given by$\begin{eqnarray*}{{P}}_{{\boldsymbol{n}}}({\boldsymbol{y}})=\prod _{i=1}^{d}{{L}}_{{n}_{i}}({y}_{i}),\quad {\boldsymbol{y}}\in {{\rm{\Omega }}}^{d}.\end{eqnarray*}$Hence,$\begin{eqnarray*}{\int }_{{{\rm{\Omega }}}^{d}}{{P}}_{{\boldsymbol{n}}}({\boldsymbol{y}}){{P}}_{{\boldsymbol{m}}}({\boldsymbol{y}})={{\boldsymbol{\alpha }}}_{{\boldsymbol{n}}}{{\boldsymbol{\delta }}}_{{\boldsymbol{n}},{\boldsymbol{m}}}=\displaystyle \prod _{i=1}^{d}{\alpha }_{{n}_{i}}{\delta }_{{n}_{i},{m}_{i}},\quad {\boldsymbol{n}},{\boldsymbol{m}}\geqslant 0.\end{eqnarray*}$Let ${\left\{{\bar{\omega }}_{{j}_{k}},{\xi }_{{j}_{k}}\right\}}_{{j}_{k}=0}^{N}$ be the Gauss-Legendre weights and nodes in Ω, and let ${I}_{{z}_{k},N}$ be the corresponding interpolation operator in zk direction. Then, the d-dimensional weights and nodes ${\left\{{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{r}}},{{\boldsymbol{\xi }}}_{{\boldsymbol{r}}}\right\}}_{{\left|{\boldsymbol{r}}\right|}_{\infty }\leqslant N}$ in Ωd are given by$\begin{eqnarray*}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{r}}}=\left({\bar{\omega }}_{{r}_{1}},\ldots ,{\bar{\omega }}_{{r}_{d}}\right),\qquad {{\boldsymbol{\xi }}}_{{\boldsymbol{r}}}=\left({\xi }_{{r}_{1}},\ldots ,{\xi }_{{r}_{d}}\right).\end{eqnarray*}$The multi-dimensional Gauss-Legendre quadrature formula is given by$\begin{eqnarray}{\int }_{{{\rm{\Omega }}}^{d}}f({\boldsymbol{z}}){\rm{d}}{\boldsymbol{z}}=\displaystyle \sum _{{\left|{\boldsymbol{r}}\right|}_{\infty }\leqslant N}f\left({{\boldsymbol{\xi }}}_{{\boldsymbol{r}}}\right){\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{r}}},\ \forall f({\boldsymbol{z}})\in {{ \mathcal P }}_{2N+1}^{d}.\end{eqnarray}$Hence$\begin{eqnarray}\begin{array}{l}\displaystyle \sum _{{\left|{\boldsymbol{k}}\right|}_{\infty }\leqslant N}{{P}}_{{\boldsymbol{n}}}\left({{\boldsymbol{\xi }}}_{{\boldsymbol{k}}}\right){{P}}_{{\boldsymbol{m}}}\left({{\boldsymbol{\xi }}}_{{\boldsymbol{k}}}\right){\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{k}}}={{\boldsymbol{\alpha }}}_{{\boldsymbol{n}}}{{\boldsymbol{\delta }}}_{{\boldsymbol{n}},{\boldsymbol{m}}},\\ \qquad \forall \ 0\leqslant {\boldsymbol{m}}+{\boldsymbol{n}}\leqslant 1+2N.\end{array}\end{eqnarray}$For any φCd), then the Gauss-Legendre interpolation operator ${{\boldsymbol{I}}}_{{\boldsymbol{\xi }},N}:C({{\rm{\Omega }}}^{d})\longrightarrow {{ \mathcal P }}_{N}^{d}$ is computed uniquely by$\begin{eqnarray*}\left({{\boldsymbol{I}}}_{{\boldsymbol{\xi }},N}\phi \right)({{\boldsymbol{\xi }}}_{{\boldsymbol{r}}})=\phi ({{\boldsymbol{\xi }}}_{{\boldsymbol{r}}})\quad \forall \ {\boldsymbol{r}}\in {{\mathbb{N}}}^{d},{\left|{\boldsymbol{r}}\right|}_{\infty }\leqslant N.\end{eqnarray*}$For each direction, we assume that the number of Gauss quadrature points is N + 1 points. We define$\begin{eqnarray}{{\boldsymbol{I}}}_{{\boldsymbol{y}},N}={I}_{{y}_{1},N}\circ \ldots \circ {I}_{{y}_{d},N}.\end{eqnarray}$Since ${{\boldsymbol{I}}}_{{\boldsymbol{y}},N}\phi \in {{ \mathcal P }}_{N}^{d}$, then we obtain that$\begin{eqnarray}\begin{array}{rcl}{{\boldsymbol{I}}}_{{\boldsymbol{y}},N}\phi \left({\boldsymbol{y}}\right) & = & \displaystyle \sum _{{\left|{\boldsymbol{r}}\right|}_{\infty }\leqslant N}{\hat{\phi }}_{{\boldsymbol{r}}}{{P}}_{{\boldsymbol{r}}}\left({\boldsymbol{y}}\right),\mathrm{where}\ {\hat{\phi }}_{{\boldsymbol{r}}}\\ & = & \displaystyle \frac{1}{{{\boldsymbol{\alpha }}}_{{\boldsymbol{r}}}}\displaystyle \sum _{{\left|{\boldsymbol{j}}\right|}_{\infty }\leqslant N}\phi \left({{\boldsymbol{\xi }}}_{{\boldsymbol{j}}}\right){{P}}_{{\boldsymbol{r}}}({\xi }_{{\boldsymbol{j}}}){\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}.\end{array}\end{eqnarray}$We define the space ${\tilde{B}}^{q}\left({{\rm{\Omega }}}^{d}\right)$ for qd equipped with the semi-norm and norm:$\begin{eqnarray}\begin{array}{rcl}{\left|\mu \right|}_{{\tilde{B}}^{q}\left({{\rm{\Omega }}}^{d}\right)} & = & {\left(\displaystyle \sum _{j=1}^{d}\displaystyle \sum _{{\boldsymbol{q}}\in {\mho }_{j}}{\parallel {{\boldsymbol{\partial }}}_{{\boldsymbol{x}}}^{{\boldsymbol{q}}}\mu \parallel }_{{{\boldsymbol{\omega }}}^{{q}_{j}{{\boldsymbol{e}}}_{j},{q}_{j}{{\boldsymbol{e}}}_{j}}}^{2}\right)}^{\tfrac{1}{2}},\\ {\parallel \mu \parallel }_{{\tilde{B}}^{q}\left({{\rm{\Omega }}}^{d}\right)} & = & {\left({\parallel \mu \parallel }^{2}+{\left|\mu \right|}_{{\tilde{B}}^{q}\left({{\rm{\Omega }}}^{d}\right)}^{2}\right)}^{\tfrac{1}{2}},\end{array}\end{eqnarray}$respectively. For 1 ≤ jd, the index sets ℧j are defined as$\begin{eqnarray*}{\mho }_{j}=\left\{{\boldsymbol{q}}\in {{\mathbb{N}}}_{0}^{d}:\ d\leqslant {q}_{j}\leqslant q;{q}_{i}\in \left\{0,1\right\},i\ne j;\displaystyle \sum _{k=1}^{d}{q}_{k}=q\right\}.\end{eqnarray*}$

([29]).For $\mu \in {\tilde{B}}^{q}\left({{\rm{\Omega }}}^{d}\right)$ with $d\leqslant q\leqslant M+1$,$\begin{eqnarray}\parallel {{\boldsymbol{I}}}_{{\boldsymbol{x}},M}\mu -\mu \parallel \leqslant c\sqrt{\displaystyle \frac{(M-q+1)!}{M!}}{\left(M+q\right)}^{-(q+1)/2}{\left|\mu \right|}_{{\tilde{B}}^{q}\left({{\rm{\Omega }}}^{d}\right)},\end{eqnarray}$where c is a non-negative constant independent of $q,M$ and μ.

4. Legendre collocation discretization

In this section, we describe the procedure of solving problem (1.1) in the domain Ωd $:= $ ( − 1, 1)d. Using the change of variables:$\begin{eqnarray*}{t}_{i}\to \,{\psi }_{i}({x}_{i})=\displaystyle \frac{(1+{x}_{i})}{2},{x}_{i}\in [-1,1],\end{eqnarray*}$and employing the linear transformations:$\begin{eqnarray*}{r}_{i}={\psi }_{i}({\sigma }_{i}),{\sigma }_{i}\in [-1,1],\quad {s}_{i}={\psi }_{i}({\tau }_{i}),{\tau }_{i}\in [-1,{x}_{i}],\end{eqnarray*}$then equation (1.1) can be expressed as follows:$\begin{eqnarray}\begin{array}{l}\phi \left({\psi }_{1}({x}_{1}),\ldots ,{\psi }_{d}({x}_{d})\right)=y\left({\psi }_{1}({x}_{1}),\ldots ,{\psi }_{d}({x}_{d})\right)\\ +\,\displaystyle \frac{1}{{2}^{d}}{\displaystyle \int }_{-1}^{1}\cdots {\displaystyle \int }_{-1}^{1}{k}_{1}\left({\psi }_{1}({x}_{1}),{\psi }_{1}({\sigma }_{1}),\ldots ,{\psi }_{d}({x}_{d}),{\psi }_{d}({\sigma }_{d})\right)\\ \times \,f\left(\phi \left({\psi }_{1}({\sigma }_{1}),\ldots ,{\psi }_{d}({\sigma }_{d})\right)\right){\rm{d}}{\sigma }_{d}\cdots {\rm{d}}{\sigma }_{1}\\ +\,\displaystyle \frac{1}{{2}^{d}}{\displaystyle \int }_{-1}^{{x}_{1}}\cdots {\displaystyle \int }_{-1}^{{x}_{d}}{k}_{2}\left({\psi }_{1}({x}_{1}),{\psi }_{1}({\tau }_{1}),\ldots ,{\psi }_{d}({\tau }_{d}),{\psi }_{d}({x}_{d})\right)\\ \times \,g\left(\phi \left({\psi }_{1}({\tau }_{1}),\ldots ,{\psi }_{d}({\tau }_{d})\right)\right){\rm{d}}{\tau }_{d}\cdots {\rm{d}}{\tau }_{1},\end{array}\end{eqnarray}$which may be written in the compact form$\begin{eqnarray}\begin{array}{rcl}{\rm{\Phi }}({\boldsymbol{x}}) & = & Y({\boldsymbol{x}})+\displaystyle \frac{1}{{2}^{d}}\,{\int }_{-{\bf{1}}}^{{\bf{1}}}{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({\rm{\Phi }}({\boldsymbol{\sigma }})){\rm{d}}{\boldsymbol{\sigma }}\\ & & +\displaystyle \frac{1}{{2}^{d}}\,{\int }_{-{\bf{1}}}^{{\boldsymbol{x}}}{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})G({\rm{\Phi }}({\boldsymbol{\tau }})){\rm{d}}{\boldsymbol{\tau }},\end{array}\end{eqnarray}$where$\begin{eqnarray*}\begin{array}{rcl}{\rm{\Phi }}({\boldsymbol{x}}) & = & {\rm{\Phi }}({x}_{1},\ldots ,{x}_{d})=\phi ({\psi }_{1}({x}_{1}),\ldots {\psi }_{d}({x}_{d})),\\ Y({\boldsymbol{x}}) & = & Y({x}_{1},\ldots ,{x}_{d})=y({\psi }_{1}({x}_{1}),\ldots ,{\psi }_{d}({x}_{d})),\\ {K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }}) & = & {K}_{1}({x}_{1},{\sigma }_{1},\ldots ,{x}_{d},{\sigma }_{d})\\ & = & {k}_{1}({\psi }_{1}({x}_{1}),{\psi }_{1}({\sigma }_{1}),\ldots ,{\psi }_{d}({x}_{d}),{\psi }_{d}({\sigma }_{d})),\\ {K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }}) & = & {K}_{2}({x}_{1},{\tau }_{1},\ldots ,{x}_{d},{\tau }_{d})\\ & = & {k}_{2}({\psi }_{1}({x}_{1}),{\psi }_{1}({\tau }_{1}),\ldots ,{\psi }_{d}({x}_{d}),{\psi }_{d}({\tau }_{d})),\\ F({\rm{\Phi }}({\boldsymbol{\sigma }})) & = & f(\phi ({\psi }_{1}({\sigma }_{1}),\ldots ,{\psi }_{d}({\sigma }_{d})),\\ G({\rm{\Phi }}({\boldsymbol{\tau }})) & = & g(\phi ({\psi }_{1}({\tau }_{1}),\ldots ,{\psi }_{d}({\tau }_{d}))).\end{array}\end{eqnarray*}$For computing the second integral term in (4.2), we use the linear transformation:$\begin{eqnarray*}\begin{array}{l}{\tau }_{i}({x}_{i},{\beta }_{i})=\displaystyle \frac{{x}_{i}+1}{2}\,{\beta }_{i}+\displaystyle \frac{{x}_{i}-1}{2},\\ {\beta }_{i}\in [-1,1],i=1,\ldots ,d,\end{array}\end{eqnarray*}$to transform the integral interval [ − 1, xi] to [ − 1, 1]. Therefore, equation (4.2) becomes$\begin{eqnarray}\begin{array}{rcl}{\rm{\Phi }}({\boldsymbol{x}}) & = & Y({\boldsymbol{x}})+\displaystyle \frac{1}{{2}^{d}}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({\rm{\Phi }}({\boldsymbol{\sigma }})){\rm{d}}{\boldsymbol{\sigma }}\\ & & +\displaystyle \frac{\prod (1+{\boldsymbol{x}})}{{4}^{d}}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{K}_{2}({\boldsymbol{x}},{{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}})G({\rm{\Phi }}({{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}})){\rm{d}}{\boldsymbol{\beta }},\end{array}\end{eqnarray}$where$\begin{eqnarray*}{{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}}=\left({\tau }_{1}({x}_{1},{\beta }_{1}),\ldots ,{\tau }_{d}({x}_{d},{\beta }_{d})\right).\end{eqnarray*}$Setting$\begin{eqnarray}{{\rm{\Phi }}}_{N}({\bf{x}})=\displaystyle \sum _{| {\boldsymbol{i}}{| }_{\infty }\leqslant N}{\hat{\phi }}_{{\boldsymbol{i}}}\,{{P}}_{{\boldsymbol{i}}}({\boldsymbol{x}})\in {{ \mathcal P }}_{N}^{d},\end{eqnarray}$and inserting (4.4) into (4.3) lead to the following scheme$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{N}({\boldsymbol{x}})={{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,Y({\boldsymbol{x}})\\ +\,\displaystyle \frac{1}{{2}^{d}}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}\,{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}\left[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({{\rm{\Phi }}}_{N}({\boldsymbol{\sigma }}))\right]\,{\rm{d}}{\boldsymbol{\sigma }}\\ +\,\displaystyle \frac{1}{{4}^{d}}\,{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{\beta }},N}\left[\prod (1+{\boldsymbol{x}}){K}_{2}({\boldsymbol{x}},{{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}})G({{\rm{\Phi }}}_{N}({{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}}))\right]\,{\rm{d}}{\boldsymbol{\beta }}.\end{array}\end{eqnarray}$The implementation of the spectral collocation scheme is performed as follows:

Setting$\begin{eqnarray}\begin{array}{l}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\beta }},N}\left[\prod (1+{\boldsymbol{x}}){K}_{2}({\boldsymbol{x}},{{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}})G({{\rm{\Phi }}}_{N}({{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}}))\right]\\ \quad =\,\displaystyle \sum _{| {\boldsymbol{i}}{| }_{\infty }\leqslant N}\,\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\hat{\upsilon }}_{{\boldsymbol{i}},{\boldsymbol{j}}}\,{{P}}_{{\boldsymbol{i}}}({\boldsymbol{x}}){{P}}_{{\boldsymbol{j}}}({\boldsymbol{\beta }}),\end{array}\end{eqnarray}$and$\begin{eqnarray}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({{\rm{\Phi }}}_{N}({\boldsymbol{\sigma }}))]=\displaystyle \sum _{| {\boldsymbol{i}}{| }_{\infty }\leqslant N}\,\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\hat{a}}_{{\boldsymbol{i}},{\boldsymbol{j}}}\,{{P}}_{{\boldsymbol{i}}}({\boldsymbol{x}}){{P}}_{{\boldsymbol{j}}}({\boldsymbol{\sigma }}),\end{eqnarray}$enable one to immediately write$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{1}{{4}^{d}}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\beta }},N}\left[\prod (1+{\boldsymbol{x}}){K}_{2}({\boldsymbol{x}},{{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}})G({{\rm{\Phi }}}_{N}({{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}}))\right]{\rm{d}}{\boldsymbol{\beta }}\\ \quad =\,\displaystyle \frac{1}{{4}^{d}}\,\displaystyle \sum _{| {\boldsymbol{i}}{| }_{\infty }\leqslant N}\,\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\hat{\upsilon }}_{{\boldsymbol{i}},{\boldsymbol{j}}}\,{{P}}_{{\boldsymbol{i}}}({\boldsymbol{x}}){\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{P}}_{{\boldsymbol{j}}}({\boldsymbol{\beta }})\,{\rm{d}}{\boldsymbol{\beta }}\\ \quad =\,\displaystyle \frac{1}{{2}^{d}}\,\displaystyle \sum _{| {\boldsymbol{i}}{| }_{\infty }\leqslant N}\,{\hat{\upsilon }}_{{\boldsymbol{i}},{\boldsymbol{o}}}\,{{P}}_{{\boldsymbol{i}}}({\boldsymbol{x}}),\end{array}\end{eqnarray}$and this with relation (3.2) yield$\begin{eqnarray}\begin{array}{rcl}{\hat{\upsilon }}_{{\boldsymbol{i}},{\bf{0}}} & = & \displaystyle \frac{\prod (2{\boldsymbol{i}}+1)}{{4}^{d}}\,\displaystyle \sum _{| {\boldsymbol{r}}{| }_{\infty }\leqslant N}\displaystyle \sum _{| {\boldsymbol{s}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{r}}}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{s}}}\\ & & \times \,\prod (1+{{\boldsymbol{x}}}_{{\boldsymbol{r}}}){K}_{2}({{\boldsymbol{x}}}_{{\boldsymbol{r}}},{{\boldsymbol{\tau }}}_{{{\boldsymbol{x}}}_{{\boldsymbol{r}}},{{\boldsymbol{\beta }}}_{{\boldsymbol{s}}}})G({{\rm{\Phi }}}_{N}({{\boldsymbol{\tau }}}_{{{\boldsymbol{x}}}_{{\boldsymbol{r}}},{{\boldsymbol{\beta }}}_{{\boldsymbol{s}}}})){{P}}_{{\boldsymbol{i}}}({{\boldsymbol{x}}}_{{\boldsymbol{r}}}).\end{array}\end{eqnarray}$Using (4.7) again yields$\begin{eqnarray}\displaystyle \frac{1}{{2}^{d}}\,{\int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({{\rm{\Phi }}}_{N}({\boldsymbol{\sigma }}))]{\rm{d}}{\boldsymbol{\sigma }}=\displaystyle \sum _{| {\boldsymbol{i}}{| }_{\infty }\leqslant N}\,{\hat{a}}_{{\boldsymbol{i}},{\bf{0}}}\,{{P}}_{{\boldsymbol{i}}}({\boldsymbol{x}}),\end{eqnarray}$where$\begin{eqnarray}\begin{array}{rcl}{\hat{a}}_{{\boldsymbol{i}},{\bf{0}}} & = & \displaystyle \frac{\prod (2{\boldsymbol{i}}+1)}{{4}^{d}}\\ & & \times \displaystyle \sum _{| {\boldsymbol{r}}{| }_{\infty }\leqslant N}\displaystyle \sum _{| {\boldsymbol{s}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{r}}}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{s}}}\,{K}_{1}({{\boldsymbol{x}}}_{{\boldsymbol{r}}},{{\boldsymbol{\sigma }}}_{{\boldsymbol{s}}})F({{\rm{\Phi }}}_{N}({{\boldsymbol{\sigma }}}_{{\boldsymbol{s}}}))]\,{{P}}_{{\boldsymbol{i}}}({{\boldsymbol{x}}}_{{\boldsymbol{r}}}).\end{array}\end{eqnarray}$Consequently$\begin{eqnarray}\begin{array}{rcl}\displaystyle \sum _{| {\boldsymbol{i}}{| }_{\infty }\leqslant N}{\hat{\phi }}_{{\boldsymbol{i}}}\,{{P}}_{{\boldsymbol{i}}}({\boldsymbol{x}}) & = & \displaystyle \sum _{| {\boldsymbol{i}}{| }_{\infty }\leqslant N}{\hat{\mu }}_{{\boldsymbol{i}}}\,{{P}}_{{\boldsymbol{i}}}({\boldsymbol{x}})+\displaystyle \sum _{| {\boldsymbol{i}}{| }_{\infty }\leqslant N}\,{\hat{a}}_{{\boldsymbol{i}},{\bf{0}}}\,{{P}}_{{\boldsymbol{i}}}({\boldsymbol{x}})\\ & & +\displaystyle \frac{1}{{2}^{d}}\displaystyle \sum _{| {\boldsymbol{i}}{| }_{\infty }\leqslant N}\,{\hat{\upsilon }}_{{\boldsymbol{i}},{\bf{0}}}\,{{P}}_{{\boldsymbol{i}}}({\boldsymbol{x}}),\end{array}\end{eqnarray}$where$\begin{eqnarray}{\hat{\mu }}_{{\boldsymbol{i}}}=\displaystyle \frac{\prod (2{\boldsymbol{i}}+1)}{{2}^{d}}\,\displaystyle \sum _{| {\boldsymbol{r}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{r}}}\,Y({{\boldsymbol{x}}}_{{\boldsymbol{r}}}){{P}}_{{\boldsymbol{i}}}({{\boldsymbol{x}}}_{{\boldsymbol{r}}}).\end{eqnarray}$Using the orthogonality of the Legendre polynomial, we obtain the following system of algebraic equations.$\begin{eqnarray}{\hat{\phi }}_{{\boldsymbol{i}}}={\hat{\mu }}_{{\boldsymbol{i}}}+{\hat{\phi }}_{{\boldsymbol{i}},{\bf{0}}}+\displaystyle \frac{1}{{2}^{d}}\,{\hat{\upsilon }}_{{\boldsymbol{i}},{\bf{0}}}.\end{eqnarray}$

5. Convergence analysis

In this section, we investigate the convergence and error analysis of the proposed method.

Let βi be the Legendre-Gauss nodes in Ωd and τi = τ(x, βi). The mapped Legendre-Gauss interpolation operator ${}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}:{{\boldsymbol{C}}}^{d}(-{\bf{1}},{\boldsymbol{x}})\to {{ \mathcal P }}_{N}^{d}(-{\bf{1}},{\boldsymbol{x}})$ is defined by$\begin{eqnarray}{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\phi ({{\boldsymbol{\tau }}}_{i})=\phi ({{\boldsymbol{\tau }}}_{i}),\end{eqnarray}$then$\begin{eqnarray}{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\phi ({{\boldsymbol{\tau }}}_{i})=\phi ({{\boldsymbol{\tau }}}_{{\boldsymbol{i}}})=\phi ({{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{{\boldsymbol{\beta }}}_{{\boldsymbol{i}}}})={{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\phi ({{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\beta }_{i}}),\end{eqnarray}$and$\begin{eqnarray}{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\phi ({\boldsymbol{\tau }})={\left.{{\boldsymbol{I}}}_{{\boldsymbol{\beta }},N}\phi ({{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}})\right|}_{{\boldsymbol{\beta }}=\tfrac{2{\boldsymbol{\tau }}}{1+{\boldsymbol{x}}}+\displaystyle \frac{1-{\boldsymbol{x}}}{1+{\boldsymbol{x}}}}.\end{eqnarray}$Accordingly, the following relation can easily be achieved$\begin{eqnarray}\begin{array}{rcl}{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\phi ({\boldsymbol{\tau }}){\rm{d}}{\boldsymbol{\tau }} & = & \displaystyle \frac{\prod (1+{\boldsymbol{x}})}{{2}^{d}}{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{\beta }},N}\phi ({{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}}){\rm{d}}{\boldsymbol{\beta }}\\ & = & \displaystyle \frac{\prod (1+{\boldsymbol{x}})}{{2}^{d}}\displaystyle \sum _{| {\boldsymbol{i}}{| }_{\infty }\leqslant N}{{\boldsymbol{\varpi }}}_{{\boldsymbol{i}}}\,\phi ({{\boldsymbol{\tau }}}_{i}),\end{array}\end{eqnarray}$and$\begin{eqnarray}{\int }_{-{\bf{1}}}^{{\boldsymbol{x}}}{\left({}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\phi ({\boldsymbol{\tau }})\right)}^{2}{\rm{d}}{\boldsymbol{\tau }}=\displaystyle \frac{\prod (1+{\boldsymbol{x}})}{{2}^{d}}\displaystyle \sum _{| {\boldsymbol{i}}{| }_{\infty }\leqslant N}{{\boldsymbol{\varpi }}}_{{\boldsymbol{i}}}\,{\phi }^{2}({{\boldsymbol{\tau }}}_{i}).\end{eqnarray}$Assume that I is the identity operator in d-dimension. Then we obtain for any dsN + 1 that$\begin{eqnarray}\begin{array}{l}{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}{\left|({\boldsymbol{I}}-{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N})\phi ({\boldsymbol{\tau }})\right|}^{2}{\rm{d}}{\boldsymbol{\tau }}\\ \quad =\,\displaystyle \frac{\prod (1+{\boldsymbol{x}})}{{2}^{d}}{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{\left({\boldsymbol{I}}-{{\boldsymbol{I}}}_{{\boldsymbol{\beta }},N})\phi ({{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}})\right|}^{2}{\rm{d}}{\boldsymbol{\beta }}\\ \quad \leqslant \,c\displaystyle \frac{\prod (1+{\boldsymbol{x}})}{{2}^{d}}\displaystyle \frac{(N-s+1)!}{N!}{\left(N+s\right)}^{-(s+1)}{\left|\phi ({{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}})\right|}_{{\tilde{B}}^{s}({{\rm{\Omega }}}^{d})}^{2}.\end{array}\end{eqnarray}$For convenience, we denote EN = Φ(x) − ΦN(x). Clearly$\begin{eqnarray}\parallel {E}_{N}\parallel \leqslant \parallel {\rm{\Phi }}-{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\rm{\Phi }}\parallel +\parallel {{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\rm{\Phi }}-{{\rm{\Phi }}}_{N}\parallel .\end{eqnarray}$

The following inequality holds:$\begin{eqnarray}\parallel {E}_{N}\parallel \leqslant \displaystyle \sum _{i=1}^{5}\parallel {E}_{i}\parallel ,\end{eqnarray}$where$\begin{eqnarray}\begin{array}{rcl}{E}_{1} & = & {\rm{\Phi }}({\boldsymbol{x}})-{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\rm{\Phi }}({\boldsymbol{x}}),\\ {E}_{2} & = & \displaystyle \frac{1}{{2}^{d}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}[{\boldsymbol{I}}-{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}]{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({\rm{\Phi }}({\boldsymbol{\sigma }})){\rm{d}}{\boldsymbol{\sigma }},\\ {E}_{3} & = & \displaystyle \frac{1}{{2}^{d}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})[F({\rm{\Phi }}({\boldsymbol{\sigma }}))-F({{\rm{\Phi }}}_{N}({\boldsymbol{\sigma }}))]{\rm{d}}{\boldsymbol{\sigma }},\\ {E}_{4} & = & \displaystyle \frac{1}{{2}^{d}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}[{\boldsymbol{I}}-{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}]{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})G({\rm{\Phi }}({\boldsymbol{\tau }})){\rm{d}}{\boldsymbol{\tau }},\\ {E}_{5} & = & \displaystyle \frac{1}{{2}^{d}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})[G({\rm{\Phi }}({\boldsymbol{\tau }}))-G({{\rm{\Phi }}}_{N}({\boldsymbol{\tau }}))]\,{\rm{d}}{\boldsymbol{\tau }}.\end{array}\end{eqnarray}$
It follows directly from (4.2) that$\begin{eqnarray}\begin{array}{rcl}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\rm{\Phi }}({\boldsymbol{x}}) & = & {{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,Y({\boldsymbol{x}})+\displaystyle \frac{1}{{2}^{d}}\,{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({\rm{\Phi }}({\boldsymbol{\sigma }})){\rm{d}}{\boldsymbol{\sigma }}\\ & & +\displaystyle \frac{1}{{2}^{d}}\,{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})G({\rm{\Phi }}({\boldsymbol{\tau }})){\rm{d}}{\boldsymbol{\tau }},\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Phi }}}_{N}({\boldsymbol{x}}) & = & {{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,Y({\boldsymbol{x}})\\ & & +\displaystyle \frac{1}{{2}^{d}}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({{\rm{\Phi }}}_{N}({\boldsymbol{\sigma }}))]\,{\rm{d}}{\boldsymbol{\sigma }}\\ & & +\displaystyle \frac{1}{{2}^{d}}\,{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}[{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})G({{\rm{\Phi }}}_{N}({\boldsymbol{\tau }}))]\,{\rm{d}}{\boldsymbol{\tau }}.\end{array}\end{eqnarray}$Subtracting (5.11) from (5.10), leads to$\begin{eqnarray}\begin{array}{l}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\rm{\Phi }}({\boldsymbol{x}})-{{\rm{\Phi }}}_{N}({\boldsymbol{x}})=\displaystyle \frac{1}{{2}^{d}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}({K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({\rm{\Phi }}({\boldsymbol{\sigma }}))\\ \quad -\,{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({{\rm{\Phi }}}_{N}({\boldsymbol{\sigma }}))]){\rm{d}}{\boldsymbol{\sigma }}\\ \quad +\,\displaystyle \frac{1}{{2}^{d}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}({K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})G({\rm{\Phi }}({\boldsymbol{\tau }}))\\ \quad -\,{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}[{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})G({{\rm{\Phi }}}_{N}({\boldsymbol{\tau }}))]){\rm{d}}{\boldsymbol{\tau }}\\ =\,\displaystyle \frac{1}{{2}^{d}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}[{\boldsymbol{I}}-{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}]{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({\rm{\Phi }}({\boldsymbol{\sigma }})){\rm{d}}{\boldsymbol{\sigma }}\\ \quad +\,\displaystyle \frac{1}{{2}^{d}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})[F({\rm{\Phi }}({\boldsymbol{\sigma }}))-F({{\rm{\Phi }}}_{N}({\boldsymbol{\sigma }}))]{\rm{d}}{\boldsymbol{\sigma }}\\ \quad +\,\displaystyle \frac{1}{{2}^{d}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}[{\boldsymbol{I}}-{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}]{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})G({\rm{\Phi }}({\boldsymbol{\tau }})){\rm{d}}{\boldsymbol{\tau }}\\ \quad +\,\displaystyle \frac{1}{{2}^{d}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})[G({\rm{\Phi }}({\boldsymbol{\tau }}))-G({{\rm{\Phi }}}_{N}({\boldsymbol{\tau }}))]\,{\rm{d}}{\boldsymbol{\tau }}.\end{array}\end{eqnarray}$This, together with (5.7), leads to the desired result. □

Let Φ and ΦN be the solutions of (4.3) and (4.5), respectively. Let ${\rm{\Phi }}\in {\tilde{B}}^{s}({{\rm{\Omega }}}^{d})$, $d\leqslant s\leqslant N+1,$ and the nonlinear functions F and G satisfy the Lipschitz conditions$\begin{eqnarray*}\begin{array}{l}\left|F({{\rm{\Phi }}}_{1})-F({{\rm{\Phi }}}_{2})\right|\leqslant {L}_{1}\left|{{\rm{\Phi }}}_{1}-{{\rm{\Phi }}}_{2}\right|,\\ \left|G({{\rm{\Phi }}}_{1})-G({{\rm{\Phi }}}_{2})\right|\leqslant {L}_{2}\left|{{\rm{\Phi }}}_{1}-{{\rm{\Phi }}}_{2}\right|,\end{array}\end{eqnarray*}$where L1 and L2 are real non-negative constants satisfy ${M}_{1}{L}_{1}+{M}_{2}{L}_{2}\lt 1$ with ${M}_{i}=\parallel {K}_{i}{\parallel }_{\infty },i=1,2.$ Then, we have$\begin{eqnarray*}\begin{array}{rcl}\parallel {E}_{N}\parallel & \leqslant & c\sqrt{\displaystyle \frac{(1+N-s)!}{N!}}{\left(s+N\right)}^{\tfrac{-(1+s)}{2}}\\ & & \times \left(| {\rm{\Phi }}{| }_{{\tilde{B}}^{s}({{\rm{\Omega }}}^{d})}+| F(.,{\rm{\Phi }}(.)){| }_{{\tilde{B}}^{s}({{\rm{\Omega }}}^{d})}+| G(.,{\rm{\Phi }}(.)){| }_{{\tilde{B}}^{s}({{\rm{\Omega }}}^{d})}\right).\end{array}\end{eqnarray*}$

By lemma (1), we get$\begin{eqnarray}\begin{array}{rcl}\parallel {E}_{1}\parallel & = & \parallel {\rm{\Phi }}({\boldsymbol{x}})-{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\rm{\Phi }}({\boldsymbol{x}})\parallel \\ & \leqslant & c\sqrt{\displaystyle \frac{(1+N-s)!}{N!}}{\left(s+N\right)}^{\tfrac{-(1+s)}{2}}\,| {\rm{\Phi }}{| }_{{\tilde{B}}^{s}({{\rm{\Omega }}}^{d}).}\end{array}\end{eqnarray}$Next, we estimate $\parallel {E}_{2}\parallel .$ By using the Gauss-Legendre integration formula (3.1), we have$\begin{eqnarray}\begin{array}{l}\parallel {E}_{2}\parallel =\displaystyle \frac{1}{{2}^{d}}\parallel \displaystyle \frac{1}{{2}^{d}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}[{\boldsymbol{I}}-{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}]{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({\rm{\Phi }}({\boldsymbol{\sigma }})){\rm{d}}{\boldsymbol{\sigma }}\parallel \\ =\,\displaystyle \frac{1}{{2}^{d}}{\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}{\left({\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}({\boldsymbol{I}}-{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}){K}_{1}({{\boldsymbol{x}}}_{{\boldsymbol{j}}},{\boldsymbol{\sigma }})F({\rm{\Phi }}({\boldsymbol{\sigma }})){\rm{d}}{\boldsymbol{\sigma }}\right)}^{2}\right]}^{\tfrac{1}{2}}.\end{array}\end{eqnarray}$Using the Cauchy-Schwarz inequality yields$\begin{eqnarray}\begin{array}{rcl}\parallel {E}_{2}\parallel & \leqslant & \displaystyle \frac{1}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}\,{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\right.\\ & & {\left.\times {\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{\left|({\boldsymbol{I}}-{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}]){K}_{1}({{\boldsymbol{x}}}_{{\boldsymbol{j}}},{\boldsymbol{\sigma }})F({\rm{\Phi }}({\boldsymbol{\sigma }}))\right|}^{2}{\rm{d}}{\boldsymbol{\sigma }}\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{1}{{2}^{d/2}}{\left(\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\right)}^{\tfrac{1}{2}}\\ & & \times \mathop{\max }\limits_{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\left({\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{\left|({\boldsymbol{I}}-{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}){K}_{1}({{\boldsymbol{x}}}_{{\boldsymbol{j}}},{\boldsymbol{\sigma }})F({\rm{\Phi }}({\boldsymbol{\sigma }}))\right|}^{2}{\rm{d}}{\boldsymbol{\sigma }}\right)}^{\tfrac{1}{2}},\end{array}\end{eqnarray}$and by noting that$\begin{eqnarray}\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\leqslant {2}^{d},\end{eqnarray}$then, we get$\begin{eqnarray}\parallel {E}_{2}\parallel \leqslant c\sqrt{\displaystyle \frac{(1+N-s)!}{N!}}{\left(s+N\right)}^{\tfrac{-(1+s)}{2}}\,| F({\rm{\Phi }}(.)){| }_{{\tilde{B}}^{s}({{\rm{\Omega }}}^{d}).}\end{eqnarray}$To estimate $\parallel {E}_{3}\parallel ,$ then using the Legendre-Gauss integration formula (3.1) gives$\begin{eqnarray}\begin{array}{rcl}\parallel {E}_{3}\parallel & = & \displaystyle \frac{1}{{2}^{d}}\parallel {{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})[F({\rm{\Phi }}({\boldsymbol{\sigma }}))\\ & & -F({{\rm{\Phi }}}_{N}({\boldsymbol{\sigma }}))]{\rm{d}}{\boldsymbol{\sigma }}\parallel \\ & = & \displaystyle \frac{1}{{2}^{d}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}\,{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\left({\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}\,{K}_{1}({{\boldsymbol{x}}}_{{\boldsymbol{j}}},{\boldsymbol{\sigma }})\left(F({\rm{\Phi }}({\boldsymbol{\sigma }}))\right.\right.\right.\\ & & {\left.{\left.\left.-F({{\rm{\Phi }}}_{N}({\boldsymbol{\sigma }})\right){\rm{d}}{\boldsymbol{\sigma }}\right)}^{2},\right]}^{\tfrac{1}{2}},\end{array}\end{eqnarray}$again the application of Cauchy-Schwarz inequality and (5.16) leads to$\begin{eqnarray}\begin{array}{rcl}\parallel {E}_{3}\parallel & \leqslant & \displaystyle \frac{1}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}\,{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}\left|{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}\,{K}_{1}({{\boldsymbol{x}}}_{{\boldsymbol{j}}},{\boldsymbol{\sigma }})\left(F({\rm{\Phi }}({\boldsymbol{\sigma }}))\right.\right.\right.\\ & & {\left.{\left.\left.-F({{\rm{\Phi }}}_{N}({\boldsymbol{\sigma }})\right)\right|}^{2}{\rm{d}}{\boldsymbol{\sigma }},\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{1}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}\,{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\displaystyle \sum _{| {\boldsymbol{p}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{p}}}\left|{K}_{1}({{\boldsymbol{x}}}_{{\boldsymbol{j}}},{{\boldsymbol{\sigma }}}_{{\boldsymbol{p}}})\left(F({\rm{\Phi }}({{\boldsymbol{\sigma }}}_{{\boldsymbol{p}}}))\right.\right.\right.\\ & & {\left.{\left.\left.-F({{\rm{\Phi }}}_{N}({{\boldsymbol{\sigma }}}_{{\boldsymbol{p}}})\right)\right|}^{2},\right]}^{\tfrac{1}{2}}.\end{array}\end{eqnarray}$Using the Lipschitz condition, we obtain$\begin{eqnarray}\begin{array}{rcl}\parallel {E}_{3}\parallel & \leqslant & \displaystyle \frac{{M}_{1}\,{L}_{1}}{{2}^{d/2}}{\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\displaystyle \sum _{| {\boldsymbol{p}}{| }_{\infty }\leqslant N}{\left|{\rm{\Phi }}({{\boldsymbol{\sigma }}}_{p})-{{\rm{\Phi }}}_{N}({{\boldsymbol{\sigma }}}_{p})\right|}^{2}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{p}}}\right]}^{\tfrac{1}{2}}\\ & \leqslant & {M}_{1}\,{L}_{1}{\left({\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{\left|{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}\left({\rm{\Phi }}({\boldsymbol{\sigma }})-{{\rm{\Phi }}}_{N}({\boldsymbol{\sigma }})\right)\right|}^{2}{\rm{d}}{\boldsymbol{\sigma }}\right)}^{\tfrac{1}{2}}.\end{array}\end{eqnarray}$By using the triangle inequality, we have$\begin{eqnarray}\begin{array}{rcl}\parallel {E}_{3}\parallel & \leqslant & {M}_{1}\,{L}_{1}\left[{\left({\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{\left|{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}{\rm{\Phi }}({\boldsymbol{\sigma }})-{\rm{\Phi }}({\boldsymbol{\sigma }})\right|}^{2}{\rm{d}}{\boldsymbol{\sigma }}\right)}^{\tfrac{1}{2}}\right.\\ & & \left.+{\left({\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{\left|{\rm{\Phi }}({\boldsymbol{\sigma }})-{{\rm{\Phi }}}_{N}({\boldsymbol{\sigma }})\right|}^{2}{\rm{d}}{\boldsymbol{\sigma }}\right)}^{\tfrac{1}{2}}\right],\end{array}\end{eqnarray}$further from lemma 1, we get$\begin{eqnarray}\begin{array}{rcl}\parallel {E}_{3}\parallel & \leqslant & c\sqrt{\displaystyle \frac{(1+N-s)!}{N!}}{\left(s+N\right)}^{\tfrac{-(1+s)}{2}}\,| {\rm{\Phi }}{| }_{{\tilde{B}}^{s}({{\rm{\Omega }}}^{d})}\\ & & +{M}_{1}\,{L}_{1}\parallel {E}_{N}\parallel .\end{array}\end{eqnarray}$To estimate $\parallel {E}_{4}\parallel ,$ the Legendre-Gauss integration formula (3.1) is used to give$\begin{eqnarray}\begin{array}{l}\parallel {E}_{4}\parallel =\displaystyle \frac{1}{{2}^{d}}\parallel {{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}[{\boldsymbol{I}}-{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}]{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})G({\rm{\Phi }}({\boldsymbol{\tau }})){\rm{d}}{\boldsymbol{\tau }}\parallel \\ =\,\displaystyle \frac{1}{{2}^{d}}{\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}{\left({\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}\left[{\boldsymbol{I}}-{}_{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\right]{K}_{2}({{\boldsymbol{x}}}_{{\boldsymbol{j}}},{\boldsymbol{\tau }})G({\rm{\Phi }}({\boldsymbol{\tau }})){\rm{d}}{\boldsymbol{\tau }}\right)}^{2}\right]}^{\tfrac{1}{2}},\end{array}\end{eqnarray}$and application of Cauchy-Schwarz inequality and (5.6) lead to$\begin{eqnarray}\begin{array}{l}\parallel {E}_{4}\parallel =\displaystyle \frac{1}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}\,{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\right.\\ {\left.\times {\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\left|[{\boldsymbol{I}}-{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}]{K}_{2}({{\boldsymbol{x}}}_{j},{\boldsymbol{\tau }})G({\rm{\Phi }}({\boldsymbol{\tau }}))\right|}^{2}{\rm{d}}{\boldsymbol{\tau }}\right]}^{\tfrac{1}{2}}\\ \leqslant \,\displaystyle \frac{1}{{2}^{d/2}}{\left(\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\right)}^{1/2}\\ \times \,\mathop{\max }\limits_{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\left({\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\left|[{\boldsymbol{I}}-{}_{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}]{K}_{2}({{\boldsymbol{x}}}_{j},{\boldsymbol{\tau }})G({\rm{\Phi }}({\boldsymbol{\tau }}))\right|}^{2}{\rm{d}}{\boldsymbol{\tau }}\right)}^{1/2}\\ \leqslant c\sqrt{\displaystyle \frac{(1+N-s)!}{N!}}{\left(s+N\right)}^{\tfrac{-(1+s)}{2}}\,| G({\rm{\Phi }}(.)){| }_{{\tilde{B}}^{s}({{\rm{\Omega }}}^{d})}.\end{array}\end{eqnarray}$Finally, an estimation to $\parallel {E}_{5}\parallel $ is obtained using the Legendre-Gauss integration formula (3.1)$\begin{eqnarray}\begin{array}{rcl}\parallel {E}_{5}\parallel & = & \displaystyle \frac{1}{{2}^{d}}\parallel {{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})\left(G({\rm{\Phi }}({\boldsymbol{\tau }}))-G({{\rm{\Phi }}}_{N}({\boldsymbol{\tau }}))\right)\,{\rm{d}}{\boldsymbol{\tau }}\parallel \\ & = & \displaystyle \frac{1}{{2}^{d}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\left({\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{}_{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left({K}_{2}({{\boldsymbol{x}}}_{j},{\boldsymbol{\tau }})G({\rm{\Phi }}({\boldsymbol{\tau }}))\right.\right.\right.\\ & & {\left.{\left.\left.-{K}_{2}({{\boldsymbol{x}}}_{j},{\boldsymbol{\tau }})G({{\rm{\Phi }}}_{N}({\boldsymbol{\tau }})\right){\rm{d}}{\boldsymbol{\tau }}\right)}^{2},\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{1}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\,{\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}\left|{}_{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left({K}_{2}({{\boldsymbol{x}}}_{j},{\boldsymbol{\tau }})G({\rm{\Phi }}({\boldsymbol{\tau }}))\right.\right.\right.\\ & & {\left.{\left.\left.-{K}_{2}({{\boldsymbol{x}}}_{j},{\boldsymbol{\tau }})G({{\rm{\Phi }}}_{N}({\boldsymbol{\tau }})\right)\right|}^{2}{\rm{d}}{\boldsymbol{\tau }},\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{1}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\displaystyle \frac{\prod \left(1+{{\boldsymbol{x}}}_{{\boldsymbol{j}}}\right)}{{2}^{d}}\displaystyle \sum _{| {\boldsymbol{q}}{| }_{\infty }\leqslant N}\left|{K}_{2}({{\boldsymbol{x}}}_{j},{{\boldsymbol{\tau }}}_{{\boldsymbol{q}}})G({\rm{\Phi }}({{\boldsymbol{\tau }}}_{{\boldsymbol{q}}}))\right.\right.\\ & & {\left.{\left.-{K}_{2}({{\boldsymbol{x}}}_{j},{{\boldsymbol{\tau }}}_{{\boldsymbol{q}}})G({{\rm{\Phi }}}_{N}({{\boldsymbol{\tau }}}_{{\boldsymbol{q}}}))\right|}^{2}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{q}}},\right]}^{1/2}.\end{array}\end{eqnarray}$Using the Lipschitz condition, we get$\begin{eqnarray}\begin{array}{rcl}\parallel {E}_{5}\parallel & \leqslant & \displaystyle \frac{{M}_{2}\,{L}_{2}}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\displaystyle \frac{\prod \left(1+{{\boldsymbol{x}}}_{j}\right)}{{2}^{d}}\right.\\ & & {\left.\times \displaystyle \sum _{| {\boldsymbol{q}}{| }_{\infty }\leqslant N}{\left|{\rm{\Phi }}({{\boldsymbol{\tau }}}_{{\boldsymbol{q}}})-{{\rm{\Phi }}}_{N}({{\boldsymbol{\tau }}}_{{\boldsymbol{q}}})\right|}^{2}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{q}}}\right]}^{1/2}\\ & \leqslant & \displaystyle \frac{{M}_{2}\,{L}_{2}}{{2}^{d/2}}{\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}{\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\left|{}_{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left({\rm{\Phi }}({\boldsymbol{\tau }})-{{\rm{\Phi }}}_{N}({\boldsymbol{\tau }})\right)\right|}^{2}{\rm{d}}{\boldsymbol{\tau }}\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{{M}_{2}\,{L}_{2}}{{2}^{d/2}}{\left(\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\right)}^{1/2}\\ & & \times \mathop{\max }\limits_{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\left({\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\left({}_{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left({\rm{\Phi }}({\boldsymbol{\tau }})-{{\rm{\Phi }}}_{N}({\boldsymbol{\tau }})\right)\right)}^{2}{\rm{d}}{\boldsymbol{\tau }}\right)}^{1/2}\\ & \leqslant & {M}_{2}\,{L}_{2}\mathop{\max }\limits_{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\left({\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\left({}_{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left({\rm{\Phi }}({\boldsymbol{\tau }})-{{\rm{\Phi }}}_{N}({\boldsymbol{\tau }})\right)\right)}^{2}{\rm{d}}{\boldsymbol{\tau }}\right)}^{1/2}.\end{array}\end{eqnarray}$Using the triangle inequality, we have$\begin{eqnarray}\begin{array}{rcl}\parallel {E}_{5}\parallel & \leqslant & {M}_{2}\,{L}_{2}\mathop{\max }\limits_{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}\left[{\left({\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\left|{}_{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}{\rm{\Phi }}({\boldsymbol{\tau }})-{{\rm{\Phi }}}_{N}({\boldsymbol{\tau }})\right|}^{2}{\rm{d}}{\boldsymbol{\tau }}\right)}^{1/2}\right]\\ & & +{\left({\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\left|{\rm{\Phi }}({\boldsymbol{\tau }})-{{\rm{\Phi }}}_{N}({\boldsymbol{\tau }})\right|}^{2}{\rm{d}}{\boldsymbol{\tau }}\right)}^{1/2}.\end{array}\end{eqnarray}$We further get from (5.6) that$\begin{eqnarray}\begin{array}{rcl}\parallel {E}_{5}\parallel & \leqslant & c\,{M}_{2}\,{L}_{2}\sqrt{\displaystyle \frac{\prod \left(1+{\boldsymbol{x}}\right)}{{2}^{d}}}\sqrt{\displaystyle \frac{(N-s+1)!}{N!}}\\ & & \times {\left(N+s\right)}^{\tfrac{-(s+1)}{2}}{\left|{\rm{\Phi }}(.)\right|}_{{\tilde{B}}^{s}({{\rm{\Omega }}}^{d})}+{M}_{2}\,{L}_{2}\parallel {E}_{N}\parallel .\end{array}\end{eqnarray}$We know that$\begin{eqnarray*}{L}_{1}\,{M}_{1}+{M}_{2}\,{L}_{2}\lt 1.\end{eqnarray*}$Hence, a combination of (5.13), (5.17), (5.22), (5.24) and (5.28) leads to the desired conclusion of this theorem.

6. Existence of the approximate solution

We consider the following iteration process:$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{N}^{m}({\boldsymbol{x}})={{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,Y({\boldsymbol{x}})\\ +\,\displaystyle \frac{1}{{2}^{d}}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({{\rm{\Phi }}}_{N}^{m-1}({\boldsymbol{\sigma }}))]\,{\rm{d}}{\boldsymbol{\sigma }}\\ +\,\displaystyle \frac{1}{{4}^{d}}\,{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{\beta }},N}\left[\prod (1+{\boldsymbol{x}}){K}_{2}({\boldsymbol{x}},{{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}})G({{\rm{\Phi }}}_{N}^{m-1}({{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}}))\right]\,{\rm{d}}{\boldsymbol{\beta }}.\end{array}\end{eqnarray}$Let$\begin{eqnarray*}\overrightarrow{{{\rm{\Phi }}}_{N}^{m}}({\boldsymbol{x}})={{\rm{\Phi }}}_{N}^{m}({\boldsymbol{x}})-{{\rm{\Phi }}}_{N}^{m-1}({\boldsymbol{x}}).\end{eqnarray*}$Then, we have$\begin{eqnarray}\begin{array}{rcl}\overrightarrow{{{\rm{\Phi }}}_{N}^{m}}({\boldsymbol{x}}) & = & \displaystyle \frac{1}{{2}^{d}}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})[F({{\rm{\Phi }}}_{N}^{m-1}({\boldsymbol{\sigma }}))\\ & & -F({{\rm{\Phi }}}_{N}^{m-2}({\boldsymbol{\sigma }}))]\,{\rm{d}}{\boldsymbol{\sigma }}\\ & & +\displaystyle \frac{1}{{2}^{d}}\,{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}\,{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left[\,{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})\left(G({{\rm{\Phi }}}_{N}^{m-1}({\boldsymbol{\tau }}))\right.\right.\\ & & \left.\left.-G({{\rm{\Phi }}}_{N}^{m-2}({\boldsymbol{\tau }})\right)\right]{\rm{d}}{\boldsymbol{\tau }}\\ & = & {Q}_{1}\,+\,{Q}_{2},\end{array}\end{eqnarray}$where$\begin{eqnarray*}\begin{array}{rcl}{Q}_{1} & = & \displaystyle \frac{1}{{2}^{d}}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})[F({{\rm{\Phi }}}_{N}^{m-1}({\boldsymbol{\sigma }}))\\ & & -F({{\rm{\Phi }}}_{N}^{m-2}({\boldsymbol{\sigma }}))]\,{\rm{d}}{\boldsymbol{\sigma }}\\ {Q}_{2} & = & \displaystyle \frac{1}{{2}^{d}}\,{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}\,{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left[\,{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})\left(G({{\rm{\Phi }}}_{N}^{m-1}({\boldsymbol{\tau }}))\right.\right.\\ & & \left.\left.-G({{\rm{\Phi }}}_{N}^{m-2}({\boldsymbol{\tau }})\right)\right]{\rm{d}}{\boldsymbol{\tau }}.\end{array}\end{eqnarray*}$

Using Cauchy-Schwarz inequality for estimating $\parallel {Q}_{1}\parallel $ leads to$\begin{eqnarray}\begin{array}{rcl}\parallel {Q}_{1}\parallel & = & \parallel \displaystyle \frac{1}{{2}^{d}}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}\left[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})\left(F({{\rm{\Phi }}}_{N}^{m-1}({\boldsymbol{\sigma }}))\right.\right.\\ & & \left.\left.-F({{\rm{\Phi }}}_{N}^{m-2}({\boldsymbol{\sigma }})\right)\right]\,{\rm{d}}{\boldsymbol{\sigma }},\parallel \\ & = & \displaystyle \frac{1}{{2}^{d}}\left[{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}\left({\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}\left[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})\left(F({{\rm{\Phi }}}_{N}^{m-1}({\boldsymbol{\sigma }}))\right.\right.\right.\right.\\ & & {\left.{\left.\left.\left.-F({{\rm{\Phi }}}_{N}^{m-2}({\boldsymbol{\sigma }})\right)\right]{\rm{d}}{\boldsymbol{\sigma }}\right)}^{2}{\rm{d}}{\boldsymbol{x}},\right]}^{\tfrac{1}{2}}\\ & = & \displaystyle \frac{1}{{2}^{d}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\left({\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}\left[{K}_{1}({{\boldsymbol{x}}}_{{\boldsymbol{j}}},{\boldsymbol{\sigma }})\left(F({{\rm{\Phi }}}_{N}^{m-1}({\boldsymbol{\sigma }}))\right.\right.\right.\right.\\ & & {\left.{\left.\left.\left.-F({{\rm{\Phi }}}_{N}^{m-2}({\boldsymbol{\sigma }})\right)\right]{\rm{d}}{\boldsymbol{\sigma }}\right)}^{2},\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{1}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}\left|{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}{K}_{1}({{\boldsymbol{x}}}_{{\boldsymbol{j}}},{\boldsymbol{\sigma }})\left(F({{\rm{\Phi }}}_{N}^{m-1}({\boldsymbol{\sigma }}))\right.\right.\right.\\ & & {\left.{\left.\left.-F({{\rm{\Phi }}}_{N}^{m-2}({\boldsymbol{\sigma }})\right)\right|}^{2}{\rm{d}}{\boldsymbol{\sigma }},\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{1}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}\displaystyle \sum _{| {\boldsymbol{q}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{q}}}\left|{K}_{1}({{\boldsymbol{x}}}_{{\boldsymbol{j}}},{{\boldsymbol{\sigma }}}_{q})\left(F({{\rm{\Phi }}}_{N}^{m-1}({{\boldsymbol{\sigma }}}_{q}))\right.\right.\right.\\ & & {\left.{\left.\left.-F({{\rm{\Phi }}}_{N}^{m-2}({{\boldsymbol{\sigma }}}_{q})\right)\right|}^{2},\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{{M}_{1}}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}\displaystyle \sum _{| {\boldsymbol{q}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{q}}}\left|\left(F({{\rm{\Phi }}}_{N}^{m-1}({{\boldsymbol{\sigma }}}_{q}))\right.\right.\right.\\ & & {\left.{\left.\left.-F({{\rm{\Phi }}}_{N}^{m-2}({{\boldsymbol{\sigma }}}_{q})\right)\right|}^{2},\right]}^{\tfrac{1}{2}},\end{array}\end{eqnarray}$and application of Lipschitz condition gives$\begin{eqnarray}\begin{array}{rcl}\parallel {Q}_{1}\parallel & \leqslant & \displaystyle \frac{{M}_{1}\,{L}_{1}}{{2}^{d/2}}{\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}\displaystyle \sum _{| {\boldsymbol{q}}{| }_{\infty }\leqslant N}\bar{{\omega }_{q}}\bar{{\omega }_{q}}{\left|{{\rm{\Phi }}}_{N}^{m-1}({{\boldsymbol{\sigma }}}_{q})-{{\rm{\Phi }}}_{N}^{m-2}({{\boldsymbol{\sigma }}}_{q})\right|}^{2}\right]}^{\tfrac{1}{2}}\\ & \leqslant & {M}_{1}\,{L}_{1}{\left[\displaystyle \sum _{| {\boldsymbol{q}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{q}}}{\left|{{\rm{\Phi }}}_{N}^{m-1}({{\boldsymbol{\sigma }}}_{{\boldsymbol{q}}})-{{\rm{\Phi }}}_{N}^{m-2}({{\boldsymbol{\sigma }}}_{{\boldsymbol{q}}})\right|}^{2}\right]}^{\tfrac{1}{2}}\\ & \leqslant & {M}_{1}\,{L}_{1}{\left[{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{\left|{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}\left({{\rm{\Phi }}}_{N}^{m-1}({\boldsymbol{\sigma }})-{{\rm{\Phi }}}_{N}^{m-2}({\boldsymbol{\sigma }})\right)\right|}^{2}{\rm{d}}{\boldsymbol{\sigma }}\right]}^{\tfrac{1}{2}}\\ & \leqslant & {M}_{1}\,{L}_{1}\parallel \overrightarrow{{{\rm{\Phi }}}_{N}^{m-1}}({\boldsymbol{\sigma }})\parallel .\end{array}\end{eqnarray}$We next estimate $\parallel {Q}_{2}\parallel $ using Cauchy-Schwarz inequality to get$\begin{eqnarray}\begin{array}{rcl}\parallel {Q}_{2}\parallel & = & \parallel {{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}\,{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left[\,{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})\left(G({{\rm{\Phi }}}_{N}^{m-1}({\boldsymbol{\tau }}))\right.\right.\\ & & \left.\left.-G({{\rm{\Phi }}}_{N}^{m-2}({\boldsymbol{\tau }})\right)\right]{\rm{d}}{\boldsymbol{\tau }}\parallel\\ & = & \displaystyle \frac{1}{{2}^{d}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\left({\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{}_{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left({K}_{2}({{\boldsymbol{x}}}_{j},{\boldsymbol{\tau }})G({{\rm{\Phi }}}_{N}^{m-1}({\boldsymbol{\tau }}))\right.\right.\right.\\ & & {\left.{\left.\left.-{K}_{2}({{\boldsymbol{x}}}_{j},{\boldsymbol{\tau }})G({{\rm{\Phi }}}_{N}^{m-2}({\boldsymbol{\tau }})\right){\rm{d}}{\boldsymbol{\tau }}\right)}^{2},\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{1}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\,{\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}\left|{}_{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left({K}_{2}({{\boldsymbol{x}}}_{j},{\boldsymbol{\tau }})G({{\rm{\Phi }}}_{N}^{m-1}({\boldsymbol{\tau }}))\right.\right.\right.\\ & & {\left.{\left.\left.-{K}_{2}({{\boldsymbol{x}}}_{j},{\boldsymbol{\tau }})G({{\rm{\Phi }}}_{N}^{m-2}({\boldsymbol{\tau }})\right)\right|}^{2}{\rm{d}}{\boldsymbol{\tau }},\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{1}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\displaystyle \frac{\prod \left|1+{{\boldsymbol{x}}}_{{\boldsymbol{j}}}\right|}{{2}^{d}}\right.\\ & & \times \displaystyle \sum _{| {\boldsymbol{q}}{| }_{\infty }\leqslant N}\left|{K}_{2}({{\boldsymbol{x}}}_{j},{{\boldsymbol{\tau }}}_{{\boldsymbol{q}}})G({{\rm{\Phi }}}_{N}^{m-1}({{\boldsymbol{\tau }}}_{{\boldsymbol{q}}}))\right.\\ & & {\left.{\left.-{K}_{2}({{\boldsymbol{x}}}_{j},{{\boldsymbol{\tau }}}_{{\boldsymbol{q}}})G({{\rm{\Phi }}}_{N}^{m-2}({{\boldsymbol{\tau }}}_{{\boldsymbol{q}}}))\right|}^{2}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{q}}},\right]}^{1/2}.\end{array}\end{eqnarray}$

Using (5.4), (5.16) and the Lipschitz condition enable us to write$\begin{eqnarray}\begin{array}{rcl}\parallel {Q}_{2}\parallel & \leqslant & \displaystyle \frac{{M}_{2}\,{L}_{2}}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\displaystyle \frac{\prod \left|1+{\boldsymbol{x}}\right|}{{2}^{d}}\displaystyle \sum _{| {\boldsymbol{q}}{| }_{\infty }\leqslant N}\left|{{\rm{\Phi }}}_{N}^{m-1}({{\boldsymbol{\tau }}}_{{\boldsymbol{q}}})\right.\right.\\ & & {\left.{\left.-{{\rm{\Phi }}}_{N}^{m-2}({{\boldsymbol{\tau }}}_{{\boldsymbol{q}}})\right|}^{2}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{q}}},\right]}^{1/2}\\ & \leqslant & \displaystyle \frac{{M}_{2}\,{L}_{2}}{{2}^{d/2}}{\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}{\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\left|{}_{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\overrightarrow{{{\rm{\Phi }}}_{N}^{m-1}}({\boldsymbol{\tau }})\right|}^{2}{\rm{d}}{\boldsymbol{\tau }}\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{{M}_{2}\,{L}_{2}}{{2}^{d/2}}{\left(\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\right)}^{1/2}\mathop{\max }\limits_{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\left({\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\left(\overrightarrow{{{\rm{\Phi }}}_{N}^{m-1}}({\boldsymbol{\tau }})\right)}^{2}{\rm{d}}{\boldsymbol{\tau }}\right)}^{1/2}\\ & \leqslant & {M}_{2}\,{L}_{2}\parallel \overrightarrow{{{\rm{\Phi }}}_{N}^{m-1}}\parallel .\end{array}\end{eqnarray}$Since, L1M1 + M2L2 < 1, then $\parallel \overrightarrow{{{\rm{\Phi }}}_{N}^{m}}\parallel \to 0$ as m → ∞ .

7. Uniqueness of the approximate solution

Let Φ1,N2,N be two different solutions satisfy (4.3). We consider the following iteration processes:$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Phi }}}_{1,N}^{m}({\boldsymbol{x}}) & = & {{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,Y({\boldsymbol{x}})\\ & & +\displaystyle \frac{1}{{2}^{d}}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({{\rm{\Phi }}}_{1,N}^{m-1}({\boldsymbol{\sigma }}))]\,{\rm{d}}{\boldsymbol{\sigma }}\\ & & +\displaystyle \frac{1}{{4}^{d}}\,{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{\beta }},N}\\ & & \times \left[\prod (1+{\boldsymbol{x}}){K}_{2}({\boldsymbol{x}},{{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}})G({{\rm{\Phi }}}_{1,N}^{m-1}({{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}}))\right]\,{\rm{d}}{\boldsymbol{\beta }}.\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Phi }}}_{2,N}^{m}({\boldsymbol{x}}) & = & {{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,Y({\boldsymbol{x}})\\ & & +\displaystyle \frac{1}{{2}^{d}}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})F({{\rm{\Phi }}}_{2,N}^{m-1}({\boldsymbol{\sigma }}))]\,{\rm{d}}{\boldsymbol{\sigma }}\\ & & +\displaystyle \frac{1}{{4}^{d}}\,{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{\beta }},N}\\ & & \times \left[\prod (1+{\boldsymbol{x}}){K}_{2}({\boldsymbol{x}},{{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}})G({{\rm{\Phi }}}_{2,N}^{m-1}({{\boldsymbol{\tau }}}_{{\boldsymbol{x}},{\boldsymbol{\beta }}}))\right]\,{\rm{d}}{\boldsymbol{\beta }}.\end{array}\end{eqnarray}$Let$\begin{eqnarray*}\overrightarrow{{E}_{N}^{m}}({\boldsymbol{x}})={{\rm{\Phi }}}_{1,N}^{m}({\boldsymbol{x}})-{{\rm{\Phi }}}_{2,N}^{m}({\boldsymbol{x}}).\end{eqnarray*}$Subtraction (7.1) from (7.3), leads to$\begin{eqnarray}\begin{array}{rcl}\overrightarrow{{E}_{N}^{m}}({\boldsymbol{x}}) & = & \displaystyle \frac{1}{{2}^{d}}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})[F({{\rm{\Phi }}}_{1,N}^{m-1}({\boldsymbol{\sigma }}))\\ & & -F({{\rm{\Phi }}}_{2,N}^{m-1}({\boldsymbol{\sigma }}))]\,{\rm{d}}{\boldsymbol{\sigma }}\\ & & +\displaystyle \frac{1}{{2}^{d}}\,{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}\,{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left[{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})\left(G({{\rm{\Phi }}}_{1,N}^{m-1}({\boldsymbol{\tau }}))\right.\right.\\ & & \left.\left.-G({{\rm{\Phi }}}_{2,N}^{m-1}({\boldsymbol{\tau }})\right)\right]{\rm{d}}{\boldsymbol{\tau }}\\ & = & {R}_{1}\,+\,{R}_{2},\end{array}\end{eqnarray}$where$\begin{eqnarray*}\begin{array}{rcl}{R}_{1} & = & \displaystyle \frac{1}{{2}^{d}}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})[F({{\rm{\Phi }}}_{1,N}^{m-1}({\boldsymbol{\sigma }}))\\ & & -F({{\rm{\Phi }}}_{2,N}^{m-1}({\boldsymbol{\sigma }}))]\,{\rm{d}}{\boldsymbol{\sigma }}\\ {R}_{2} & = & \displaystyle \frac{1}{{2}^{d}}\,{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}\,{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left[\,{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})\left(G({{\rm{\Phi }}}_{1,N}^{m-1}({\boldsymbol{\tau }}))\right.\right.\\ & & \left.\left.-G({{\rm{\Phi }}}_{2,N}^{m-1}({\boldsymbol{\tau }})\right)\right]{\rm{d}}{\boldsymbol{\tau }}.\end{array}\end{eqnarray*}$Using Cauchy-Schwarz inequality for estimating $\parallel {R}_{1}\parallel $, leads to$\begin{eqnarray}\begin{array}{rcl}\parallel {R}_{1}\parallel & = & \parallel \displaystyle \frac{1}{{2}^{d}}\,{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}\left[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})\left(F({{\rm{\Phi }}}_{1,N}^{m-1}({\boldsymbol{\sigma }}))\right.\right.\\ & & \left.\left.-F({{\rm{\Phi }}}_{2,N}^{m-1}({\boldsymbol{\sigma }})\right)\right]\,{\rm{d}}{\boldsymbol{\sigma }}\parallel \\ & = & \displaystyle \frac{1}{{2}^{d}}\left[{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}\left({\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{x}},N}\,{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}\left[{K}_{1}({\boldsymbol{x}},{\boldsymbol{\sigma }})\left(F({{\rm{\Phi }}}_{1,N}^{m-1}({\boldsymbol{\sigma }}))\right.\right.\right.\right.\\ & & {\left.{\left.\left.\left.-F({{\rm{\Phi }}}_{2,N}^{m-1}({\boldsymbol{\sigma }})\right)\right]{\rm{d}}{\boldsymbol{\sigma }}\right)}^{2}{\rm{d}}{\boldsymbol{x}},\right]}^{\tfrac{1}{2}}\\ & = & \displaystyle \frac{1}{{2}^{d}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\left({\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}\left[{K}_{1}({{\boldsymbol{x}}}_{{\boldsymbol{j}}},{\boldsymbol{\sigma }})\left(F({{\rm{\Phi }}}_{1,N}^{m-1}({\boldsymbol{\sigma }}))\right.\right.\right.\right.\\ & & {\left.{\left.\left.\left.-F({{\rm{\Phi }}}_{2,N}^{m-1}({\boldsymbol{\sigma }})\right)\right]{\rm{d}}{\boldsymbol{\sigma }}\right)}^{2},\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{1}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}\left|{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}{K}_{1}({{\boldsymbol{x}}}_{{\boldsymbol{j}}},{\boldsymbol{\sigma }})\left(F({{\rm{\Phi }}}_{1,N}^{m-1}({\boldsymbol{\sigma }}))\right.\right.\right.\\ & & {\left.{\left.\left.-F({{\rm{\Phi }}}_{2,N}^{m-1}({\boldsymbol{\sigma }})\right)\right|}^{2}{\rm{d}}{\boldsymbol{\sigma }},\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{1}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}\displaystyle \sum _{| {\boldsymbol{q}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{q}}}\left|{K}_{1}({{\boldsymbol{x}}}_{{\boldsymbol{j}}},{{\boldsymbol{\sigma }}}_{q})\left(F({{\rm{\Phi }}}_{1,N}^{m-1}({{\boldsymbol{\sigma }}}_{q}))\right.\right.\right.\\ & & {\left.{\left.\left.-F({{\rm{\Phi }}}_{2,N}^{m-1}({{\boldsymbol{\sigma }}}_{q})\right)\right|}^{2},\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{{M}_{1}}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}\displaystyle \sum _{| {\boldsymbol{q}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{q}}}\left|\left(F({{\rm{\Phi }}}_{1,N}^{m-1}({{\boldsymbol{\sigma }}}_{q}))\right.\right.\right.\\ & & {\left.{\left.\left.-F({{\rm{\Phi }}}_{2,N}^{m-1}({{\boldsymbol{\sigma }}}_{q})\right)\right|}^{2},\right]}^{\tfrac{1}{2}},\end{array}\end{eqnarray}$and using the Lipschitz condition, we obtain$\begin{eqnarray}\begin{array}{rcl}\parallel {R}_{1}\parallel & \leqslant & \displaystyle \frac{{M}_{1}\,{L}_{1}}{{2}^{d/2}}{\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}\displaystyle \sum _{| {\boldsymbol{q}}{| }_{\infty }\leqslant N}\bar{{\omega }_{j}}\bar{{\omega }_{q}}{\left|{{\rm{\Phi }}}_{1,N}^{m-1}({{\boldsymbol{\sigma }}}_{q})-{{\rm{\Phi }}}_{2,N}^{m-1}({{\boldsymbol{\sigma }}}_{q})\right|}^{2}\right]}^{\tfrac{1}{2}}\\ & \leqslant & {M}_{1}\,{L}_{1}{\left[\displaystyle \sum _{| {\boldsymbol{q}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{q}}}{\left|{{\rm{\Phi }}}_{1,N}^{m-1}({{\boldsymbol{\sigma }}}_{{\boldsymbol{q}}})-{{\rm{\Phi }}}_{2,N}^{m-1}({{\boldsymbol{\sigma }}}_{{\boldsymbol{q}}})\right|}^{2}\right]}^{\tfrac{1}{2}}\\ & \leqslant & {M}_{1}\,{L}_{1},{\left[{\displaystyle \int }_{-{\bf{1}}}^{{\bf{1}}}{\left|{{\boldsymbol{I}}}_{{\boldsymbol{\sigma }},N}\left({{\rm{\Phi }}}_{1,N}^{m-1}({\boldsymbol{\sigma }})-{{\rm{\Phi }}}_{2,N}^{m-1}({\boldsymbol{\sigma }})\right)\right|}^{2}{\rm{d}}{\boldsymbol{\sigma }}\right]}^{\tfrac{1}{2}}\\ & \leqslant & {M}_{1}\,{L}_{1}\parallel \overrightarrow{{E}_{N}^{m-1}}({\boldsymbol{\sigma }})\parallel .\end{array}\end{eqnarray}$We next estimate $\parallel {R}_{2}\parallel $, using Cauchy-Schwarz inequality, we get$\begin{eqnarray}\begin{array}{rcl}\parallel {R}_{2}\parallel & = & \parallel {{\boldsymbol{I}}}_{{\boldsymbol{x}},N}{\displaystyle \int }_{-{\bf{1}}}^{{\boldsymbol{x}}}\,{}_{{\boldsymbol{x}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left[\,{K}_{2}({\boldsymbol{x}},{\boldsymbol{\tau }})\left(G({{\rm{\Phi }}}_{1,N}^{m-1}({\boldsymbol{\tau }}))\right.\right.\\ & & \left.\left.-G({{\rm{\Phi }}}_{2,N}^{m-1}({\boldsymbol{\tau }})\right)\right]{\rm{d}}{\boldsymbol{\tau }}\parallel \\ & = & \displaystyle \frac{1}{{2}^{d}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\left({\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{}_{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left({K}_{2}({{\boldsymbol{x}}}_{j},{\boldsymbol{\tau }})G({{\rm{\Phi }}}_{1,N}^{m-1}({\boldsymbol{\tau }}))\right.\right.\right.\\ & & {\left.{\left.\left.-{K}_{2}({{\boldsymbol{x}}}_{j},{\boldsymbol{\tau }})G({{\rm{\Phi }}}_{2,N}^{m-1}({\boldsymbol{\tau }})\right){\rm{d}}{\boldsymbol{\tau }}\right)}^{2},\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{1}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\,{\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}\left|{}_{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\hat{{\boldsymbol{I}}}}_{{\boldsymbol{\tau }},N}\left({K}_{2}({{\boldsymbol{x}}}_{j},{\boldsymbol{\tau }})G({{\rm{\Phi }}}_{1,N}^{m-1}({\boldsymbol{\tau }}))\right.\right.\right.\\ & & {\left.{\left.\left.-{K}_{2}({{\boldsymbol{x}}}_{j},{\boldsymbol{\tau }})G({{\rm{\Phi }}}_{2,N}^{m-1}({\boldsymbol{\tau }})\right)\right|}^{2}{\rm{d}}{\boldsymbol{\tau }},\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{1}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\displaystyle \frac{\prod \left|1+{{\boldsymbol{x}}}_{{\boldsymbol{j}}}\right|}{{2}^{d}}\right.\\ & & \times \displaystyle \sum _{| {\boldsymbol{q}}{| }_{\infty }\leqslant N}\left|{K}_{2}({{\boldsymbol{x}}}_{j},{{\boldsymbol{\tau }}}_{{\boldsymbol{q}}})G({{\rm{\Phi }}}_{1,N}^{m-1}({{\boldsymbol{\tau }}}_{{\boldsymbol{q}}}))\right.\\ & & {\left.{\left.-{K}_{2}({{\boldsymbol{x}}}_{j},{{\boldsymbol{\tau }}}_{{\boldsymbol{q}}})G({{\rm{\Phi }}}_{2,N}^{m-1}({{\boldsymbol{\tau }}}_{{\boldsymbol{q}}}))\right|}^{2}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{q}}},\right]}^{1/2}.\end{array}\end{eqnarray}$

Using (5.4), (5.16) and the Lipschitz condition, enable us to write$\begin{eqnarray}\begin{array}{rcl}\parallel {R}_{2}\parallel & \leqslant & \displaystyle \frac{{M}_{2}\,{L}_{2}}{{2}^{d/2}}\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\displaystyle \frac{\prod \left|1+{{\boldsymbol{x}}}_{{\boldsymbol{j}}}\right|}{{2}^{d}}\right.\\ & & {\left.\times \displaystyle \sum _{| {\boldsymbol{q}}{| }_{\infty }\leqslant N}{\left|{{\rm{\Phi }}}_{1,N}^{m-1}({{\boldsymbol{\tau }}}_{{\boldsymbol{q}}})-{{\rm{\Phi }}}_{2,N}^{m-1}({{\boldsymbol{\tau }}}_{{\boldsymbol{q}}})\right|}^{2}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{q}}}\right]}^{1/2}\\ & \leqslant & \displaystyle \frac{{M}_{2}\,{L}_{2}}{{2}^{d/2}}{\left[\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}{\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\left|\overrightarrow{{E}_{N}^{m-1}}({\boldsymbol{\tau }})\right|}^{2}{\rm{d}}{\boldsymbol{\tau }}\right]}^{\tfrac{1}{2}}\\ & \leqslant & \displaystyle \frac{{M}_{2}\,{L}_{2}}{{2}^{d/2}}{\left(\displaystyle \sum _{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\bar{{\boldsymbol{\omega }}}}_{{\boldsymbol{j}}}\right)}^{1/2}\mathop{\max }\limits_{| {\boldsymbol{j}}{| }_{\infty }\leqslant N}{\left({\displaystyle \int }_{-{\bf{1}}}^{{{\boldsymbol{x}}}_{{\boldsymbol{j}}}}{\left(\overrightarrow{{E}_{N}^{m-1}}({\boldsymbol{\tau }})\right)}^{2}{\rm{d}}{\boldsymbol{\tau }}\right)}^{1/2}\\ & \leqslant & {M}_{2}\,{L}_{2}\parallel \overrightarrow{{E}_{N}^{m-1}}\parallel .\end{array}\end{eqnarray}$Since, L1M1 + M2L2 < 1, then $\parallel \overrightarrow{{E}_{N}^{m}}\parallel \to 0$ as m → ∞ . Accordingly Φ1,N = Φ2,N and this proves the uniqueness of the approximate solution.

8. Numerical results and comparisons

In this section, two test problems are presented to show the efficiency of the proposed method.

We consider the following nonlinear Volterra-Fredholm integral equation [6, 30, 31]:$\begin{eqnarray}\begin{array}{rcl}\phi (\zeta ) & = & \displaystyle \frac{1}{36}\left(35\cos (\zeta )-1\right)+\displaystyle \frac{1}{2}{\displaystyle \int }_{0}^{\zeta }\sin (s){\phi }^{2}(s){\rm{d}}{s}\\ & & +\displaystyle \frac{1}{36}{\displaystyle \int }_{0}^{\tfrac{\pi }{2}}\left({\cos }^{3}(\zeta )+\cos (\zeta )\right)\phi (s){\rm{d}}{s},\zeta ,\in \left[0,\displaystyle \frac{\pi }{2}\right].\end{array}\end{eqnarray}$

The exact solution of this equation is $\phi (\zeta )=\cos (\zeta ).$ Using the variables $\zeta =\tfrac{\pi }{2}t,s=\tfrac{\pi }{2}r$ and $y(t)=\phi (\tfrac{\pi }{2}t)$, we obtain the following equivalent integral equation$\begin{eqnarray}\begin{array}{rcl}y(t) & = & \displaystyle \frac{1}{36}\left(35\cos \left(\displaystyle \frac{\pi }{2}t\right)-1\right)+\displaystyle \frac{\pi }{4}{\displaystyle \int }_{0}^{t}\sin \left(\displaystyle \frac{\pi }{2}r\right){y}^{2}(r){\rm{d}}r\\ & & +\displaystyle \frac{\pi }{72}{\displaystyle \int }_{0}^{1}\left({\cos }^{3}\left(\displaystyle \frac{\pi }{2}t\right)\right.\\ & & \left.+\cos \left(\displaystyle \frac{\pi }{2}t\right)\right)y\left(\displaystyle \frac{\pi }{2}r\right){\rm{d}}r,t\in [0,1].\end{array}\end{eqnarray}$

In table 1, for various values of N, we report the numerical results of the presented method and the numerical schemes based on shifted piecewise cosine basis [6], Haar wavelets [30] and the Picard iteration method [31] to solve this example. As it is shown in this table, the present numerical results are more accurate than those reported in [6, 30, 31] to solve example 1.


Table 1.
Table 1.The L2- errors for example 1 versus N.
Method [31]Method [30]Method [6]Present method
n, m$\parallel E\parallel $2M$\parallel E\parallel $n, m$\parallel E\parallel $N$\parallel E\parallel $
2, 244.3 × 10−341.3 × 10−22, 49.1 × 10−346.6 × 10−5
4, 163.6 × 10−486.1 × 10−34, 42.1 × 10−462.4 × 10−7
4, 242.0 × 10−4168.8 × 10−42, 87.5 × 10−685.2 × 10−10
10, 128.1 × 10−6329.8 × 10−54, 81.6 × 10−7107.4 × 10−13
10, 247.9 × 10−7644.2 × 10−64, 165.0 × 10−9127.4 × 10−16

New window|CSV

Consider the following two-dimensional Volterra integral equation [32]:$\begin{eqnarray}\begin{array}{l}\phi (x,y)=f(x,y)+{\int }_{0}^{y}{\int }_{0}^{x}\displaystyle \frac{x+t-y-z}{4}\phi (t,z){\rm{d}}t{\rm{d}}z,\\ (x,y)\in {[0,1]}^{2},\end{array}\end{eqnarray}$where$\begin{eqnarray}\begin{array}{l}f(x,y)\\ =\,\displaystyle \frac{{\rm{e}}\,x\left(x(3-5x\gamma +3y\gamma )+{{\rm{e}}}^{-y\gamma }(\gamma x(-6y+5x)-3x+24{\gamma }^{2})\right)}{24\gamma },\\ \quad \gamma \in {\mathbb{R}}-\{0\}.\end{array}\end{eqnarray}$

The exact solution is given as$\begin{eqnarray}\phi (x,y)=\gamma x\,{{\rm{e}}}^{1-\gamma y}.\end{eqnarray}$The Lipschitz conditions are satisfied with M1 = 0, M2 = 0.5, d1 = d2 = 0, L1 = 0, L2 = 1. For different values for γ, the exact solution φ may have large total variation$\begin{eqnarray}{TV}(\phi ,{\rm{\Omega }})={\int }_{{\rm{\Omega }}}\parallel {\rm{\nabla }}\phi (x){\parallel }_{2}{\rm{d}}x.\end{eqnarray}$The L-errors for this example are given in table 2. These results indicate that, when γ decreases, TV(φ) increases and the method converges slower. The absolute error eN, for N = 9 and γ = 1, − 1, − 2, is displayed in figures 1-3.

Figure 1.

New window|Download| PPT slide
Figure 1.The absolute errors of example 2 at γ = 1 and N = 9.


Figure 2.

New window|Download| PPT slide
Figure 2.The absolute errors of example 2 at γ = − 1 and N = 9.



Table 2.
Table 2.The L- errors for example 2 versus N.
Nγ = 1 (TV = 1.97)γ = − 1 (TV = 5.36)γ = − 2 (TV = 25.69)
Method [32]Present methodMethod [32]Present methodMethod [32]Present method
35.704 × 10−41.110 × 10−31.171 × 10−32.972 × 10−31.824 × 10−21.787 × 10−1
53.010 × 10−52.709 × 10−66.769 × 10−57.281 × 10−63.879 × 10−31.690 × 10−3
71.158 × 10−63.406 × 10−92.711 × 10−69.177 × 10−96.267 × 10−48.348 × 10−6
93.904 × 10−82.603 × 10−129.466 × 10−81.12 × 10−128.786 × 10−52.522 × 10−8

New window|CSV

9. Conclusion

The extension of existing numerical methods for one-dimensional integral equations to their corresponding high-dimensional integral equations is not trivial. We presented an efficient spectral collocation scheme for the numerical solution of the multi-dimensional nonlinear Volterra-Fredholm integral equations based on multi-variate Legendre-collocation method. We have studied the existence and uniqueness of the solution using the Banach fixed point theorem. Moreover, we provided rigorous error estimates showing that the numerical errors decay exponentially in the weighted Sobolev space. We have also established the existence and uniqueness of the numerical solution. Our numerical tests confirmed the theoretical findings, showing that an elevated rate of convergence in comparison with the numerical results reported in [6, 30-32]. Our spectral collocation method is more flexible with better accuracy than the existing ones. In our future extension, we will consider a unified spectral collocation method for multi-dimensional nonlinear systems of integral equations with convergence analysis.

Figure 3.

New window|Download| PPT slide
Figure 3.The absolute errors of example 2 at γ = − 2 and N = 9.


Acknowledgments

The authors would like to thank the editor Bolin Wang, the associate editor, and the anonymous reviewers for their constructive comments and suggestions which improved the quality of this paper.


Reference By original order
By published year
By cited within times
By Impact factor

Brunner H 1990 On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods
SIAM J. Numer. Anal. 27 987 1000

DOI:10.1137/0727057 [Cited within: 1]

Ladopoulos E 2000 Non-linear multidimensional singular integral equations in two-dimensional fluid mechanics
Int. J. Non Linear Mech. 35 701 708

DOI:10.1016/S0020-7462(99)00052-9

Ladopoulos E Zisis V Kravvaritis D 1994 Multidimensional singular integral equations in Lp applied to three-dimensional thermoelastoplastic stress analysis
Comput. Struct. 52 781 788

DOI:10.1016/0045-7949(94)90359-X

Ladopoulos E 2000 Singular Integral Equations: Linear and Non-Linear Theory and Its Applications in Science and Engineering Berlin Springer
[Cited within: 1]

Chen Y Tang T 2010 Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel
Math. Comput. 79 147 167

DOI:10.1090/S0025-5718-09-02269-8 [Cited within: 1]

Amiri S Hajipour M Baleanu D 2020 A spectral collocation method with piecewise trigonometric basis functions for nonlinear Volterra-Fredholm integral equations
Appl. Math. Comput. 370 124915

DOI:10.1016/j.amc.2019.124915 [Cited within: 5]

Brunner H Schötzau D 2006 Hp-discontinuous Galerkin time-stepping for Volterra integro-differential equations
SIAM J. Numer. Anal. 44 224 245

DOI:10.1137/040619314

Yuan W Tang T 1990 The numerical analysis of implicit Runge-Kutta methods for a certain nonlinear integro-differential equation
Math. Comput. 54 155 168

DOI:10.1090/S0025-5718-1990-0979942-6

Gu Z 2020 Chebyshev spectral collocation method for system of nonlinear volterra integral equations
Numer. Algorithms 83 243 263

DOI:10.1007/s11075-019-00679-w

Mokhtary P Moghaddam B Lopes A Machado J T 2020 A computational approach for the non-smooth solution of non-linear weakly singular Volterra integral equation with proportional delay
Numer. Algorithms 83 987 1006

DOI:10.1007/s11075-019-00712-y

Zaky M A Ameen I G 2020 A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra-Fredholm integral equations with smooth solutions
Numer. Algorithms 84 63 89

DOI:10.1007/s11075-019-00743-5

Zaky M A 2020 An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions
Appl. Numer. Math. 154 205 222

DOI:10.1016/j.apnum.2020.04.002

Doha E H Youssri Y H Zaky M A 2019 Spectral solutions for differential and integral equations with varying coefficients using classical orthogonal polynomials
Bull. Iran. Math. Soc. 45 527 555

DOI:10.1007/s41980-018-0147-1

Zaky M A Hendy A S 2021 An efficient dissipation-preserving Legendre-Galerkin spectral method for the Higgs boson equation in the de sitter spacetime universe
Appl. Numer. Math. 160 281 295

DOI:10.1016/j.apnum.2020.10.013

Ali K K Abd El Salam M A Mohamed E M Samet B Kumar S Osman M 2020 Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series
Adv. Differ. Equ. 2020 1 23

DOI:10.1186/s13662-020-02951-z

Zaky M A Hendy A S Macías-Díaz J E 2020 High-order finite difference/spectral-Galerkin approximations for the nonlinear time-space fractional Ginzburg-Landau equation
Numer. Methods Partial Differ. Equ. 1 26

DOI:10.1002/num.22630 [Cited within: 1]

Mirzaee F Hadadiyan E 2015 Applying the modified block-pulse functions to solve the three-dimensional Volterra-Fredholm integral equations
Appl. Math. Comput. 265 759 767

DOI:10.1016/j.amc.2015.05.125 [Cited within: 1]

Wei Y Chen Y Shi X 2018 A spectral collocation method for multidimensional nonlinear weakly singular Volterra integral equation
J. Comput. Appl. Math. 331 52 63

DOI:10.1016/j.cam.2017.09.037 [Cited within: 1]

Pan Y Huang J Ma Y 2019 Bernstein series solutions of multidimensional linear and nonlinear Volterra integral equations with fractional order weakly singular kernels
Appl. Math. Comput. 347 149 161

DOI:10.1016/j.amc.2018.10.022 [Cited within: 1]

Sadri K Amini A Cheng C 2017 Low cost numerical solution for three-dimensional linear and nonlinear integral equations via three-dimensional Jacobi polynomials
J. Comput. Appl. Math. 319 493 513

DOI:10.1016/j.cam.2017.01.030 [Cited within: 1]

Liu H Huang J Pan Y Zhang J 2018 Barycentric interpolation collocation methods for solving linear and nonlinear high-dimensional Fredholm integral equations
J. Comput. Appl. Math. 327 141 154

DOI:10.1016/j.cam.2017.06.004 [Cited within: 1]

Assari P Adibi H Dehghan M 2013 A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis
J. Comput. Appl. Math. 239 72 92

DOI:10.1016/j.cam.2012.09.010 [Cited within: 1]

Wei Y Chen Y Shi X Zhang Y 2019 Spectral method for multidimensional Volterra integral equation with regular kernel
Front. Math. China 14 435 448

DOI:10.1007/s11464-019-0758-8 [Cited within: 1]

Wei Y Chen Y Shi X Zhang Y 2016 Jacobi spectral collocation method for the approximate solution of multidimensional nonlinear Volterra integral equation
SpringerPlus 5 1 16

DOI:10.1186/s40064-016-3358-z [Cited within: 1]

Wei Y Chen Y 2019 A Jacobi spectral method for solving multidimensional linear Volterra integral equation of the second kind
J. Sci. Comput. 79 1801 1813

DOI:10.1007/s10915-019-00912-7 [Cited within: 1]

Doha E H Abdelkawy M Amin A Lopes A M 2019 Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations
Commun. Nonlinear Sci. Numer. Simul. 72 342 359

DOI:10.1016/j.cnsns.2019.01.005 [Cited within: 1]

Zaky M A Hendy A S 2020 Convergence analysis of a Legendre spectral collocation method for nonlinear Fredholm integral equations in multidimensions
Math. Methods Appl. Sci. 1 14

DOI:10.1002/mma.6443 [Cited within: 1]

Zaky M A Ameen I G 2020 A novel Jacob spectral method for multi-dimensional weakly singular nonlinear Volterra integral equations with nonsmooth solutions
Eng. Comput. 1 9

DOI:10.1007/s00366-020-00953-9 [Cited within: 1]

Shen J Tang T Wang L 2011 Spectral Methods: Algorithms, Analysis and Applications vol 41New York Springer
[Cited within: 1]

Islam S Aziz I Al-Fhaid A 2014 An improved method based on haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders
J. Comput. Appl. Math. 260 449 469

DOI:10.1016/j.cam.2013.10.024 [Cited within: 5]

Micula S 2015 An iterative numerical method for Fredholm-Volterra integral equations of the second kind
Appl. Math. Comput. 270 935 942

DOI:10.1016/j.amc.2015.08.110 [Cited within: 4]

Bazm S Hosseini A 2020 Bernoulli operational matrix method for the numerical solution of nonlinear two-dimensional Volterra-Fredholm integral equations of Hammerstein type
Comput. Appl. Math. 39 49

DOI:10.1007/s40314-020-1077-0 [Cited within: 5]

相关话题/convergence Legendre spectral