删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Doubly Excited F States of Two-Electron Atoms under Weakly Coupled Plasma Environment

本站小编 Free考研考试/2022-01-02

S. Dutta1,2, J. K. Saha,3,?, S. Bhattacharyya4, T. K. Mukherjee2 Belgharia Texmaco Estate School, Belgharia, Kolkata 700056, India;
Department of Physics, Narula Institute of Technology, Agarpara, Kolkata 700109, India;
Department of Physics, Aliah University, IIA/27, Newtown, Kolkata 700160, India;
Department of Physics, Acharya Prafulla Chandra College, New Barrackpore, Kolkata 700131, India

Corresponding authors: ?E-mail:jksaha.phys@aliah.ac.in

Received:2018-12-31Online:2019-07-1
Fund supported:*Supported under Grant.No. EMR/2017/000737
from DST-SERB, Govt. of India, Grant.No. 23(Sanc.)/ST/P/S&T/16G-35/2017
from DHESTB, Govt. of West Bengal, India, and by the DHESTB, Govt. of West Bengal, India under Grant.No. 249(Sanc.)/ST/P/S&T/16G-26/2017


Abstract
Precise energy eigenvalues of metastable bound doubly excited $^{1,3}{\rm F}^{e}$ states originating from $2pnf$,($n=4$--6) configuration of helium-like ions $(Z=\text{2--4})$ under weakly coupled plasma (WCP) environment have been estimated within the framework of Ritz variational method. The wavefunction is expanded in explicitly correlated Hylleraas type basis set. The screened Coulomb potential is considered mimic the WCP environment. The atomic systems tend towards gradual instability and the number of excited metastable bound states reduces with increasing plasma strength. The wavelengths corresponding to $2pnf (^{1,3}{\rm F}^{e}) \rightarrow 2pn^\prime d (^{1,3}{\rm D}^{o})$ ($n=4$--6; $n^\prime=3$--6) transitions occurring between doubly excited states of plasma embedded two-electron ions are also reported.
Keywords: two-electron atom;doubly excited states;variational method;weakly coupled plasma;Hylleraas co-ordinate


PDF (383KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
S. Dutta, J. K. Saha, S. Bhattacharyya, T. K. Mukherjee. Doubly Excited 1,3Fe States of Two-Electron Atoms under Weakly Coupled Plasma Environment *. [J], 2019, 71(7): 853-860 doi:10.1088/0253-6102/71/7/853

1 Introduction

Doubly excited states (DESs) of two-electron atom is a topic of active interest in recent times, both from theoretical and experimental aspects.[1-9] The abundance of such DESs is noted in various astrophysical observations as well as in high temperature laboratory plasma.[10-19] The DESs of two-electron atom having unnatural parity ($\pi = (-1)^{L+1}$, $L$ is the total angular momentum quantum number) and lying below the second ionization threshold, are metastable bound. These states favorably can decay to a lower state via radiative process rather than decaying through non-radiative autoionization channel. Examples of such DESs of unnatural parity are $^{1,3}$P$^e$, $^{1,3}$D$^o$, $^{1,3}$F$^e$ states arising out of dominant $pp$, $pd$, $pf$ configurations respectively.

Atomic systems under external environments have been studied by various researchers during the past several decades, as they provide useful information about the environment. A large number of investigations[20-30] are there in the literature on the modified properties of plasma embedded atomic systems. Extensive review articles[31-32] are available on this topic. Plasma coupling strength ($\Gamma$) is defined as the ratio between average inter-particle electrostatic energy to the average thermal kinetic energy. The high temperature and low density classical plasma are categorized as weakly coupled ($\Gamma <1$). According to the Debye-Hückel theory[33] a short range Yukawa-type or screened Coulomb model potential is considered to mimic the modified inter-particle interaction under WCP environment. Due to its simplicity and effectiveness, such screened Coulomb potential has been used widely by researchers for the investigation of spectral and structural properties of atomic systems under WCP environment. In this model, plasma electron density ($n_{e}$) and temperature ($T$) are combinedly expressed through the plasma screening length ($D$).[33] As the screened Coulomb potential is more positive in nature than the "pure" Coulomb potential, in general, with the decrease of plasma screening length $(D)$, the energy levels are pushed up and the gap between two successive energy level decreases.[20] This causes the transition energy to decrease and a red shift[21] may be observed. However, it is remarkable that for some specific transitions between two doubly excited energy levels, the wavelengths get blue shifted or show a pattern with both red and blue shift w.r.t. the plasma screening length $(D)$.[21]

In the present work, we have estimated the non-rel-ativistic energy eigenvalues of doubly excited metastable bound $2pnf\,(n=4$--6) ($^{1,3}$F$^e$) states of two-electron ions ($Z=2$--4) as well as the $2s$ and $2p$ states of the respective one-electron ions under WCP environment. According to the Debye-Hückel theory,[33] in a two-electron Hamiltonian, the effect of plasma screening should be reflected in both the one-particle electron-nucleus attraction terms and the electron-electron repulsion term of the total potential. Although the effect of screening on the electron-nucleus attraction term predominates overthe electron-electron repulsion term in determining the properties of plasma embedded two electron atom, we have considered the effect of screening on both attractive electron-nucleus part and repulsive electron-electron part in the potential. Computationally, it is difficult to include the effect of screening in repulsive electron-electron part even for a partially correlated CI type basis constructed with Slater-type orbitals as the analytic solution of the corresponding basis integrals becomes extremely cumbersome.[34-35] However, we have been able to develop the methodology to estimate the basis integral for the trial wavefunction is expanded in multi-exponent Hylleraas type basis set in a way that the effect of screening in repulsive electron-electron part has been considered fully without any perturbative approximation. Ritz variational method is used to determine the energy eigenroots. The wavelengths for the dipole allowed transitions between doubly excited metastable bound states $2pnf$ [$n=4$--6] $(^{1,3}$F$^e)$ and $2pn'd$ ($n'=3$--6) $(^{1,3}$D$^o)$ are determined for different values of plasma screening length ($D$). The non-relativistic energy-eigenvalues of $2pnd$ ($n=3$--6) ($^{1,3}$D$^o$) states are taken from an earlier work of Saha et al.[21] The details of the methodology are given in Sec. 2 followed by the discussion on the results in Sec. 3 and finally concluded in Sec. 4.

2 Method

The non-relativistic Hamiltonian (in a.u.) of a two-electron atom immersed in WCP environment may be written as

$$ H=\sum_{i=1}^{2}\Big(-\frac{1}{2}\nabla_{i}^{2}-Z\frac{e^{-{r_{i}}/{D}}}{r_{i}}\Big) +\frac{e^{-{r_{12}}/{D} }}{r_{12}}\,, $$
where, in case of screening by both ions and electrons, the Debye screening length ($D$) reads as[33]

$$ D = \Big(\frac{kT}{4\pi (1+Z_{e})n_e}\Big)^{{1}/{2}}\,. $$
For a fully ionized plasma comprising of a single nuclear species, the effective nuclear charge is $Z_{e}=Z$ whereas in case of screening by electrons only, $Z_{e}=0$. After seperation of the centre of mass coordinates, the wave function of $^{1,3}$F$^{e}$ states due to dominant $pf$ configuration of a two-electron atom can be written in terms of six co-ordinates $(r_1, r_2, \theta_{12}; \theta ,\varphi ,\psi )$ as,[36-37]

$$ \Psi =f_{3}^{0}D_{3}^{0}+f_{3}^{2+}D_{3}^{2+}+f_{3}^{2-}D_{3}^{2-}\,, $$
where, $D_{L}^{\kappa \pm}$ are the rotational harmonics and functions of three Eulerian angles ($\theta$, $\varphi$, $\psi$) that define the orientation of the triangle formed by the two electrons and the nucleus in space; $\kappa$ is the angular momentum quantum number about the body fixed axis of rotation.[36] The radial parts of the wavefunction are given by $f_{3}^{0}=-F_{1}\sin\theta_{12}$, $f_{3}^{2+}=({\sqrt{15}}/{6})F_{1}\sin 2\theta_{12}$ and $f_{3}^{2-}=({\sqrt{15}}/{6})F_{2}(1-\cos 2\theta_{12})$; where, $F_{1}=(f\mp\tilde{f})$, $F_{2}=(f\pm\tilde{f})$ with the condition $\tilde{f}=f(r_{2},r_{1})$ and $\theta_{12}$ is the angle between $\vec{r}_1$ and $\vec{r}_2$. The upper sign corresponds to the singlet state and the lower sign to the triplet state. The trial radial wave function corresponding to $pf$ configurations is expanded in Hylleraas basis set as

$$ f(r_1, r_2, r_{12})=\sum_{i=1}^{A}r_{1}^{l_{i}+3} r_{2}^{m_{i}+1} r_{12}^{n_{i}} \\ \quad \times\Big[\sum_{k_{1}=1}^{p}C_{ik_{1}k_{1}}\eta_{k_{1}}(1)\eta_{k_{1}}(2) \\ \quad + \sum_{k_{1}=1}^{p}\sum_{k_{2}=1}^{p}C_{ik_{1}k_{2}}\eta_{k_{1}}(1)\eta_{k_{2}}(2)\Big]\,, $$
with the features: (a) The powers of $r_{1}$, $r_{2}$ and $r_{12}$ satisfies $(l_{i},m_{i},n_{i})\geq(0,0,0)$; (b) $A$ is the total number of ($l_{i},m_{i},n_{i}$) set considered in the calculation; (c) $\eta_i (j) = e^{-\rho_i r_j}$ are the Slater-type orbitals where $\rho$'s are the non-linear parameters; (d) $p$ denotes the total number of non-linear parameters; (e) In the double sum of Eq. (4), $k_{1} < k_{2}$; (f) $C_{ik_{1}k_{2}}$ are the linear variational parameters. The effect of the radial correlation is incorporated through different $\rho$'s in the wave function whereas, the angular correlation effect is taken care of through different powers of $r_{12}$. The number of terms in the basis set expansions for the trial radial wave function $f$ is therefore $N=[{p(p+1)}/{2}]\times A$. In the present case, we have considered a nine-exponent ($p=9$) basis set where the non-linear parameters are taken in a geometrical sequence following $\rho_{i}=\rho_{i-1}\gamma$, $\gamma$ is the geometrical ratio. After choosing the proper trial radial wave function, the energy eigenvalues are obtained by solving the generalized eigenvalue equation.[38] The details regarding the analytic evaluation of the correlated basis integrals are discussed in Dutta et al.[38]

The variational equation for the $nl$-state of the respective one-electron atoms under WCP environment can be written as

$$ \delta\int\Big[\Big(\frac{\partial f}{\partial r}\Big)^{2} +\frac{l(l+1)}{r^{2}}-E+Z\frac{e^{-{ r}/{D}}}{r}\Big] d r =0\,. $$
The radial function $f(r)$ is expanded in terms of a pure exponential basis set as

$$ f(r)=\sum_{i}C_{i}e^{-\sigma_{i}r}\,. $$
We have used 101 number of terms in the basis set and the exponents are taken in a geometrical sequence $\sigma_{i}=\sigma_{i-1}\beta$, $\beta$ is the geometrical ratio. The energy eigenvalues $E$'s and linear variational coefficients $C_{i}$'s are determined by matrix diagonalization procedure. All calculations are carried out in quadruple precision. Such procedure is repeated for different plasma screening length ($D$) considered in the present case.

3 Results and Discussion

Table 1 shows the convergence behavior of the energy eigenvalues of $2pnf$ ($n=4$--6) $(^{1,3}$F$^e)$ states of He with respect to the total number of terms $N=540$ and $N=675$ in the 9-exponent basis set for three different Debye screening lengths $D=100$, 50, and 20 (in a.u.). It can be seen from Table 1 that, all the energy eigenvalues converge at least up to sixth decimal place for $D=100$ a.u. and $D=50$ a.u. whereas, energies of $2p5f$ and $2p6f$ converge up to fourth and third decimal places respectively for $D=20$ a.u. The energy values of $2pnf$ ($n=4$--6) $(^{1,3}$F$^e)$ states of two-electron ions $(Z=2$--4) in the presence of WCP environment are given in Tables 2--4 respectively. Only the values obtained from the wave function of maximum basis size ($N=675; A=15$) are reported in Tables 2--4. It is observed that as the plasma screening length ($D$) decreases, the two-electron energy levels are pushed towards the continuum. Such behaviour is quite consistent with the fact that the screened Coulomb potential becomes more and more positive with respect to the decrease in plasma screening length ($D$). Moreover, Tables 2--4 show that for all the ions the singlet states are more bound than the triplet states from low to moderate plasma screening. At high screening (i.e. at low values of screening length $D$), we see that the singlet and triplet states become exactly or nearly degenerate. As the plasma screening increases, the two-electron energy levels become largely affected by the continuum embedded states through configuration interactions. At very high screening region, the energy values of two-electron states come very close to the one-electron continuum and tend to merge into the $2p$ threshold of the respective one-electron system.


Table 1
Table 1Energy eigenvalues (-E) for the 2pnf (n = 4-6)1,3Fe states of He for different number of terms N in the basis set with respect to different Debye screening length (D). All quantities are given in a.u.
DN-E
lFe3Fe
2p4f2p5f2p6f2p4f2p5f2p6f
1005400.503 0550.492 0220.486 4010.503 0470.492 0170.486 397
6750.503 0550.492 0220.486 4010.503 0470.492 0170.486 397
505400.476 0900.466 5430.462 4940.476 0830.466 5390.462 493
6750.476 0900.466 5430.462 4940.476 0830.466 5390.462 493
205400.406 0870.405 7920.405 5500.406 0860.405 7920.405 550
6750.406 0870.405 8560.405 7090.406 0860.405 8560.405 709

New window|CSV


Table 2
Table 2Variation of energy eigenvalues (-E) for the 2pnf (n = 4-6)1,3 Fe states of He and 2s, 2p states of He+ w.r.t. the Debye screening length (D). All quantities are given in a.u.
D1Fe3FeHe+(2s)He+(2p)
2p4f2p5f2p6f2p4f2p5f2p6f
1000.503 0550.492 0220.486 4010.503 0470.492 0170.486 3970.480 2960.480 247
0.502 956a0.491 928a0.486 314 5a0.502 952a0.491 925 5a0.486 313a
0.503 060 68b0.503 052 113b
900.499 9650.489 0580.483 5720.499 9570.489 0520.483 5690.478 1430.478 083
800.496 1360.485 4000.480 1000.496 1280.485 3940.480 0970.475 4620.475 386
700.491 2670.480 7750.475 7360.491 2590.480 7700.475 7330.472 0310.471 932
0.491 074a0.480 599 5a0.475 583 5a0.491 070 5a0.480 597a0.475 580 5a
600.484 8690.474 7420.470 0870.484 8620.474 7370.470 0850.467 4840.467 350
500.476 0900.466 5430.462 4940.476 0830.466 5390.462 4930.461 1730.460 981
0.475 737 5a0.466 241 5a0.462 223 5a0.475 733 5a0.466 237a0.462 197a
0.476 090 624b0.476 087 092b
400.463 3000.454 7730.451 7820.463 2930.454 7700.451 7810.451 8230.451 525
0.462 784a0.454 351a0.462 78a0.454 334a
300.442 9730.436 5450.435 9130.442 9680.436 5430.435 9130.436 5450.436 025
0.442 158 5a0.442 148 5a
200.406 0870.405 8560.405 7090.406 0860.405 8560.405 7090.407 1040.405 970
0.406 087 6b0.406 087 1b
100.322 8480.322 6990.321 4850.322 8480.322 6990.321 4850.327 0850.322 761
aRef. [34], bRef. [35].

New window|CSV


Table 3
Table 3Variation of energy eigenvalues (-E) for the 2pnf (n = 4-16) 1,3 Fe states of Li+ and 2s, 2p states of Li2+ w.r.t. the Debye length (D). All quantities are given in a.u.
D1Fe3FeLi2十(2s)Li2十(2p)
2p4f2p5f2p6f2p4f2p5f2p6f
1001.203 6001.158 0001.133 7341.203 5101.157 9371.133 6931.095 2981.095 248
901.198 2971.152 8351.128 7271.198 2071.152 7721.128 6871.092 0331.091 973
801.191 7031.146 4331.122 5421.191 6141.146 3711.122 5031.087 9641.087 887
701.183 2841.138 2881.114 7061.183 1951.138 2271.114 6681.082 7481.082 648
601.172 1591.127 5781.104 4571.172 0711.127 5171.104 4201.075 8231.075 687
501.156 7751.112 8621.090 4781.156 6881.112 8031.090 4421.066 1821.065 987
401.134 1071.091 3811.070 2831.134 0221.091 3261.070 2511.051 8401051 537
301.097 3931.057 0981.038 5791.097 3121.057 0481.038 5531.028 2511.027 719
201.027 8130.993 9140.982 0191.027 7450.993 8790.982 0080.982 2270.981 057
100.848 9310.846 9060.844 9000.848 9120.845 4280.841 7740.852 9470.848 554

New window|CSV


Table 4
Table 4Variation of energy eigenvalues (_E) for the 2pnf (n = 4-6) 1,3 Fe states of Be2+ and 2s, 2p states of Be3+w.r.t. the Debye screening length (D). All quantities are given in a.u.
D1Fe3FeBe3十(2幻Be3十(2p)
2p4f2p5f2p6f2p4f2p5f2p6f
1002.216 9392.114 0952.058 8542.216 6862.113 9232.058 7451.960 2981.960 249
902.216 9382.114 0952.051 6462.209 1652.106 5462.051 5361.955 9231.955 862
802.200 0522.097 5542.042 7122.199 8002.097 3822.042 6031.950 4651.950 388
702.188 0722.085 8612.031 3512.187 8212.085 6912.031 2431.943 4641.943 364
602.172 2022.070 4282.016 4172.171 9522.070 2592.016 3111.934 1591.934 022
502.150 1792.049 1141.995 9052.150 0862.048 9511.995 8061.921 1861.920 990
402.117 5772.017 7841.965 9942.117 3322.017 6211.965 8951.901 8481.901 543
302.064 3501.967 1881.918 2782.064 1101.967 0331.918 1921.869 9371.869 400
201.961 9361.871 7801.830 3411.961 7131.871 6461.830 2731.807 2921.806 102
101.685 1961.628 2461.623 0641.685 0481.628 1991.619 2161.628 4141.623 879

New window|CSV

The $2s$ and $2p$ threshold energies of respective one-electron atoms are also included in Tables 2--4 for a comprehensive analysis of the position of two-electron energy levels. The departure from Coulomb potential facilitates the removal of $l$-degeneracy in the one-electron atoms and it is evident that the $2s$ level remains more bound compared to the $2p$ level as $D$ decreases. Figure 1 illustrates the comparative behavior of different doubly excited triplet $2p4p$ (P$^e)$, $2p4d$ (D$^o)$ and $2p4f$ (F$^e)$ states below He$^+(2p)$ threshold. The energy values of $2p4p$ ($^3$P$^e)$ and $2p4d$ $(^3$D$^o)$ states of helium, immersed in WCP environment have been taken from Refs. [20] and [21] respectively. In Fig. 1, we have shown the position of triplet $2p4p$, $2p4d$, $2p4f$ energy levels of helium along with the $2s$ and $2p$ thresholds of He$^+$ at different plasma screening strength. We note that at low screening regions when the system is almost equivalent to a free system, the one-electron $2s$ and $2p$ levels are merged on each other due to their $l$-degeneracy. These levels are split when $l$-degeneracy is sufficiently lifted at a higher screening in presence of plasma environment which is evident from the diagram. It is seen from Fig. 1 that the $2p4p$ $(^3$P$^e)$ and $2p4d$ $(^3$D$^o)$ states always lie below both the $2s$ and $2p$ thresholds of He$^+$, but the $2p4f$ $(^3$F$^e)$ level crosses the $2s$ threshold of He$^+$ when the plasma screening length ($D$) is sufficiently small. Hence, at a low value of $D$, the $2p4f$ $(^3$F$^e)$ level of helium merges to the one-electron continuum.

Fig. 1

New window|Download| PPT slide
Fig. 1Relative positions of $2p4f$ ($^3$F$^e$), $2p4d$ ($^3 $D$^o$) and $2p4p$ ($^3$P$^e$) energy levels of He and $2s$, $2p$ levels of He$^+$ in different plasma conditions.



We have also estimated the energy (in meV) corresponding to the

$$ 2pnf \;(^{1,3}{\rm F}^e) \rightarrow 2pn'd (^{1,3}{\rm D}^o) $$

transitions $(n=4$--6; $n'=3$--6) for different two-electron atoms ($Z=2$--4) embedded in WCP environment. The $2pn'd (^{1,3}$D$^o)$ energy values are taken from Saha et al.[21] and the results are exhibited in Tables 5--7 for $Z=2$--4 respectively. We mention that the absolute values of the difference between the position of the energy levels are given. The sequence for transition we maintain in the table is $2pnf \rightarrow 2pnd$ whereas in all the cases the $2pnf$ states are not high lying. For instance, in the case of triplet states of Li$^+$, $2p4f$ state lies energetically higher than $2p3d$ and $2p4d$ states but lower than the $2p5d$ and $2p6d$ states. We have used the conversion relation 1 a.u. of energy $= 27.21138$ eV.[39] It is worthwhile to mention that for $2pn'd (^3$D$^o) \rightarrow 2p3p (^3$P$^e)$ transitions in WCP environment, an initial blue shift followed by a red shift with respect to decreasing plasma screening length was reported in Ref. [21] whereas in the present case no such behavior is seen for $$ 2pnf (^3{\rm F}^e) \rightarrow 2pn'd (^3{\rm D}^o)$$ transitions. The transition energies, in a systematic manner, follow either a blue shift or a red shift for a particular transition scheme. For example, the $2p4f (^3$F$^e) \rightarrow 2p3d (^3$D$^o)$ line for $Z=4$ gets a gradual red shift with respect to decreasing plasma screening length ($D$) and a blue shift is observed for the $2p4f (^3$F$^e) \rightarrow 2p4d (^3$D$^o)$ of the same ion under similar conditions. Such features are evident from Fig. 2 where the $2p4f(^{1,3}$F$^e)\rightarrow 2pnd(^{1,3}$D$^o)$ transition energies $(n=3$--6) of $Z=4$ are plotted as a function of Debye screening length ($D$).


Table 5
Table 5Absolute values of the 2pnf (1,3Fe) →2pn’d(1,3D°) (n = 4-6; n’ = 3-6) transition energies (in meV) of plasma embedded He below the He+ (2p) threshold under Debye screening.
Debye screening length (D) in a.u.
Transition1009080706050403020
1Fe ^ 1
2p4f ^ 2p3d854.25851.72848.21843.20835.57823.21801.09754.79623.78
^ 2p4d71.7072.0172.4473.0173.8175.0676.9779.8177.62
^ 2p5d*264.68360.44381.82413.23
^ 2p6d*433.29
2p5f — 2p3d1154.461148.521140.351128.691111.151082.971033.10929.71630.08
^ 2p4d371.91368.81364.58358.50349.40334.82308.98254.7383.92
2p5d*35.5363.6389.69127.74
—2p6d*133.06
2p6f — 2p3d1307.431297.781284.571265.821237.821193.171114.51946.91634.08
2p4d524.89518.07508.80495.63476.06445.02390.38271.9487.92
2 p5 d188.5085.6254.539.39
2p6d19.89
3Fe 3
2p4f — 2p3d734.25732.05729.02724.65718.03707.29688.04647.69532.15
2p4d21.9322.5923.4824.7526.6029.4934.2842.8455.08
—2p5d*288.62284.67279.28271.66
—2p6d*445.89
2p5f — 2p3d1034.401028.791021.081010.07993.54966.98919.97822.52538.40
2p4d322.07319.32315.55310.17302.12289.18266.21217.6761.33
2 p5 d11.5312.0712.7913.77
—2p6d*145.74
2p6f — 2p3d1187.311177.991165.241147.141120.141077.101001.31839.68542.41
2p4d474.99468.52459.71447.24428.72399.29347.55234.8365.34
2 p5 d164.44161.26156.95150.84
2p6d7.17
*pf level lines energetically lower than the pd level.

New window|CSV


Table 6
Table 6Absolute values of the 2pnf (1,3Fe) → 2pn’d(1,3D°) (n = 4-6; n’ = 3-6) transition energies (in meV) of plasma embedded Li+ below the Li2+ (2p) threshold under Debye screening.
Debye screening length (D) in a.u.
Transition1009080706050403020
1pe → 1
2p4f → 2p3d3229.533226.993223.503218.433210.713198.093175.373127.692997.69
→ 2p4d190.39190.91191.65192.69194.25196.75201.14209.82230.55
→ 2p5d*1148.051143.861138.061129.781117.301097.24
→ 2p6d*1848.711840.331828.781812.331787.67
2p5f — 2p3d4470.374464.074455.364442.834423.824393.024338.014224.173920.13
→ 2p4d1431.231427.991423.511417.091407.361391.681363.781306.301152.99
—2p5d92.7993.2293.8094.6295.8197.69
2p6d*607.87603.24596.92587.93574.56
2p6f — 2p3d5130.685120.085105.475084.535052.985002.124912.114728.104243.81
2p4d2091.542084.002073.622058.792036.522000.781937.881810.231476.67
2 p 5 d753.10749.23743.90736.32724.96706.79
2p6d52.4452.7753.1853.7754.59
33
2p4f — 2p3d2839.042836.782833.642829.132822.232810.972790.702748.172632.07
2p4d44.1944.9746.0747.6449.9953.7860.4773.87107.00
2p5d*1216.581212.101205.911197.051183.721162.29
—2p6d*1885.171876.471864.501847.421821.85
2p5f — 2p3d4079.144073.134064.774052.774034.614005.143952.523843.813553.62
2p4d1284.291281.321277.191271.281262.371247.951222.291169.511028.54
2 p 5 d23.5224.2525.2126.5928.6531.88
—2p6d*645.07640.12633.38623.78609.48
2p6f — 2p3d4738.854728.514714.254693.844663.114613.624526.004347.083876.64
2p4d1944.001936.711926.671912.351890.871856.421795.771672.791351.57
2 p 5 d683.23679.64674.69667.67657.15640.35
—2p6d*14.6415.2716.1017.2919.02
*pf level lines energetically lower than the pd level.

New window|CSV


Table 7
Table 7Absolute values of the 2praf (1,3Fe) → 2pn’d(1,3 D°) (n = 4-6; n= 3-6) transition energies (in meV) of plasma embedded Be2+ below the Be3+(2p) threshold under Debye screening.
Debye screening length (D) in a.u.
Transition1009080706050403020
1Fe1
2p4f → 2p3d6948.146945.646942.186937.136929.456916.186894.026845.826713.53
→ 2p4d309.27309.91310.81312.08314.03317.18322.84334.38364.21
→ 2p5d*2649.022644.542638.322629.382615.822593.85
→ 2p6d*4217.374208.404196.014178.254151.41
2p5f — 2p3d9746.649740.199731.299718.449698.869666.279609.529489.749166.80
→ 2p4d3107.773104.463099.923093.383083.443067.283038.342978.292817.48
—2p5d149.48150.02150.80151.92153.59156.24
2p6d*1418.871413.851406.901396.941382.00
2p6f — 2p3d11249.8011238.8111223.5911201.7311168.5811114.1411018.8010820.5410294.42
2p4d4610.934603.074592.224576.684553.164515.144447.624309.093945.09
2 p 5 d1652.631648.631643.101635.211623.301604.11
2p6d84.2984.7685.4086.3587.71
3F→ → 3do
2p4f — 2p3d6267.786265.496262.346257.716250.676509.086218.236174.166053.13
2p4d68.3369.6370.3572.0074.5477.1386.03101.20140.68
—2p5d*2758.912754.212747.672738.342724.122705.26
2p6d*4274.574265.364252.624234.404206.86
2p5f — 2p3d9064.109057.909049.279036.819017.888987.008931.508815.768503.97
2p4d2864.652862.042857.282851.102841.752829.152799.302742.802591.53
2 p 5 d37.4138.2039.2640.7643.0846.77
—2p6d*1478.251472.951465.691455.301439.65
2p6f — 2p3d10565.5710554.8010539.8810518.4110485.8810433.1510339.0410144.799629.79
2p4d4366.124358.944347.904332.714309.754275.304206.844071.833717.34
2 p 5 d1538.881535.101529.871522.371511.081492.91
2p6d23.2223.9524.9326.3128.35
*pf level lines energetically lower than the pd level.

New window|CSV

Fig. 2

New window|Download| PPT slide
Fig. 2Variation of transition energies (meV) for $2p4f (^{1,3}$F$^e)\rightarrow 2pnd(^{1,3}$D$^o)$ transitions $(n=3$--6) of Be$^{2+}$ in presence of weakly coupled plasma.



4 Conclusion

We report the behaviour of doubly excited energy levels of helium-like ions in WCP environment considering screened Coulomb potential. The two-electron energy levels as well as the respective one-electron thresholds become more positive as the plasma screening length decreases. The position of different doubly excited states has been compared extensively. The transition wavelengths between doubly excited states are found to undergo a gradual blue shift or a red shift with respect to the variation in plasma screening length. Such features have implications in interpreting complex atomic spectra like those of laboratory plasma experiments or astrophysical observations.

The authors have declared that no competing interests exist.


Reference By original order
By published year
By cited within times
By Impact factor

M. A. Albert, S. Laulan, S. Barmaki , Can. J. Phys.97 ( 2019)317, https://doi.org/https://ctp.itp.ac.cn/article/2019/0253-6102/10.1139/cjp-2018-0222.
[Cited within: 1]

D. Busto, L. Barreau, M. Isinger , et al., J. Phys. B 51 044002, ( 2018).


F. F. Goryaev, L. A. Vainshtein, A. M. Urnov , At. Data Nucl. Data Tables 113 ( 2017)117.


S. Kajita, K. Suzuki, H. Tanaka, N. Ohno ,Phys. Plasmas. 25 ( 2018)063303.


S. Kar, Y. Wang, W. Li, X. Sun ,Few-Body Sys. 56 ( 2015)10.


A. Müller, A. Borovik Jr., K. Huber , et al., Phys. Rev. A 97 ( 2018)022709.


A. Müller, E. Lindroth, S. Bari , et al., Phys. Rev. A 98 ( 2018)033416.


R. Si, S. Li, K. Wang, et al., Astron. Astrophys. 600 ( 2017)A85.


J. M. N. Djiokap and A. F. Starace ,J. Optics 19 ( 2017)09.
[Cited within: 1]

S. Nakazaki, K. Sakimoto, Y. Itikawa ,Phys. Scr. 47 ( 1993)359.
[Cited within: 1]

W. Schwanda and K. Eidman ,Phys. Rev. Lett. 69 ( 1992)3507.


St. Boddeker, S. Gunter, A. Konies , et al., Phys. Rev. E 47( 1990)2785.


A. B. C. Walker Jr. and H. R. Rugge , Astrophys. J. 164 ( 1971)181.


G. A. Doschek, P. Meekins, R. W. Kerplin, et al., Astrophys. J. 164 ( 1971)165.


J. L. Culhane, et al., Sol. Phys. 136 ( 1991)89.


U. Feldman , Phys. Scr. 46 ( 1992)202.


RESIK & Diogeness NEWS, Week, (2002), website: .
URL

J. Sylwester, B. Sylwester, K. J. H. Phillips , Astrophys. J. 681 ( 2008)L117.


C. Chang and W. Cui , Astrophys. J. 663 ( 2007)1207.
[Cited within: 1]

J. K. Saha, S. Bhattacharyya, T. K. Mukherjee, P. K. Mukherjee ,J. Phys. B 42 ( 2009)245701.
[Cited within: 3]

J. K. Saha, S. Bhattacharyya, T. K. Mukherjee, P. K. Mukherjee , J. Quant. Spectrosc. Radiat. Transfer 111 ( 2010)675.
[Cited within: 6]

J. K. Saha, T. K. Mukherjee, P. K. Mukherjee, B. Fricke , Eur. Phys. J. D 62 ( 2011)205.


J. K. Saha, T. K. Mukherjee, P. K. Mukherjee, B. Fricke , Eur. Phys. J. D 66 ( 2012)43.


J. K. Saha, S. Bhattacharyya, T. K. Mukherjee , Int. Rev. At. Mol. Phys. 3 ( 2012)1.


J. K. Saha, T. K. Mukherjee, P. K. Mukherjee, B. Fricke ,Phys. Plas. 20 ( 2013)042703.


S. Bhattacharyya, J. K. Saha, T. K. Mukherjee ,Phys. Rev. A 91 ( 2015)042515.


S. Dutta, J. K. Saha, S. Bhattacharyya, T. K. Mukherjee , Int. Rev. At. Mol. Phys. 6 ( 2015)73.


S. Dutta, J. K. Saha, T. K. Mukherjee ,Phys. Plas. 22 ( 2015)062103.


S. Dutta, J. K. Saha, R. Chandra, T. K. Mukherjee ,Phys. Plas. 23 ( 2016)042107.


J. K. Saha, S. Bhattacharyya, T. K. Mukherjee ,Phys. Plas. 23 ( 2016)092704.
[Cited within: 1]

A. N. Sil, S. Canuto, P. K. Mukherjee ,Adv. Quantum Chem. 58 ( 2009) 115 and references therein for comprehensive list of works till (2009).
[Cited within: 1]

S. Dutta, J. K. Saha, S. Bhattacharyya, T. K. Mu-kherjee ,Asian J. Phys. 25 ( 2016)1331.
[Cited within: 1]

A. I. Akhiezer, I. A. Akhiezer, R. A. Polovin , et al., Plas-ma Electrodynamics Linear Response Theory
Pergamon, Oxford(1975) 1.

[Cited within: 4]

S. Kar and Y. K. Ho , Int. J. Quantum Chem. 108 ( 2008)1491.
[Cited within: 2]

S. Kar and Y. K. Ho ,Phys. Rev. A 79 ( 2009)062508.
[Cited within: 2]

A. K. Bhatia and A. Temkin ,Rev. Mod. Phys. 36 ( 1964)1050.
[Cited within: 2]

T. K. Mukherjee and P. K. Mukherjee ,Phys. Rev. A 50 ( 1994)850.
[Cited within: 1]

S. Dutta, A. N. Sil, J. K. Saha, T. K. Mukherjee , Int. J. Quantum Chem. 118 ( 2017)e25577.
[Cited within: 2]

NIST, Scientific and Technical Databases, Atomic and Molecular Physics.
[Cited within: 1]

相关话题/Doubly Excited States

闂傚倸鍊搁崐鐑芥嚄閸洖绠犻柟鎹愵嚙鐟欙箓鎮楅敐搴″闁搞劍绻堥獮鏍庨鈧俊鑲╃棯閹佸仮闁哄被鍔戦幃銈夊磼濞戞﹩浼�2婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犳壆绱掔€n偓绱╂繛宸簻鎯熼梺鍐叉惈椤戝洨绮欒箛娑欌拺闁革富鍘奸崝瀣亜閵娿儲顥㈢€规洜鏁婚崺鈧い鎺戝閳锋垿鏌涘☉姗堝伐濠殿噯绠戦湁婵犲﹤鎳庢禒杈┾偓瑙勬礃濡炰粙寮幘缁樺亹鐎规洖娲ら獮姗€姊绘担鍛婃儓妞わ富鍨堕幃妯衡攽鐎n亝杈堥梺闈涚箞閸婃牠鎮¢悢鍏肩叆闁哄洦顨呮禍鎯ь渻閵堝繐顩柡浣割煼閻涱噣宕橀埡鍐炬祫闁诲函缍嗛崑鎺懳涢崘銊㈡斀闁绘劖娼欓悘锔剧棯閺夎法效妤犵偛顦垫俊鍫曞幢濞嗘埈鍟庨梻浣烘嚀椤曨參宕戦悙鏍稿寮介鐔蜂化婵炴挻鑹鹃敃锕傚箖閸忛棿绻嗛柛娆忣槸婵洭鏌嶇拠鏌ュ弰妤犵偛娲畷婊勬媴閾忕懓骞€婵犵數濮烽。钘壩i崨鏉戝瀭闂傚牊绋堥弸宥夋煥濠靛棙濯兼繛灏栨櫊閺屾洘绻涢悙顒佺彆闂佺粯鎸堕崕鑼崲濞戙垹绠i柣鎰╁妿缁变即姊虹紒妯烘诞闁衡偓闁秴桅闁告洦鍨奸弫鍐煏韫囧﹥娅呴柛鎾讳憾濮婃椽骞愭惔锝傚闂佸憡姊归悷鈺呮偘椤旈敮鍋撻敐搴℃珮闁轰礁绉电换婵囩節閸屾稑顎涘┑鈥冲级閹稿啿顫忕紒妯诲闁告盯娼у﹢閬嶅箲閵忋倕绠涙い鏂垮⒔閻撳姊虹紒妯虹伇婵☆偄瀚板畷褰掑磼閻愬鍘遍悗鍏夊亾闁逞屽墴瀹曟垿鎮欓崫鍕紱闂侀潧艌閺呮粓鎮¢妷鈺傜厽闁哄洨鍋涢埀顒€婀遍埀顒佺啲閹凤拷
婵犵數濮烽弫鍛婃叏娴兼潙鍨傜憸鐗堝笚閸嬪鏌曡箛瀣偓鏇㈡倷婵犲嫭鍠愮€广儱妫欓崣蹇涙煏閸繍妲归柍閿嬪灴閺屾稑鈽夊鍫濅紣缂備焦顨嗙敮妤佺┍婵犲浂鏁冮柨婵嗘处閸掓稑顪冮妶鍐ㄧ仾婵☆偄鍟幈銊╁焵椤掑嫭鐓忛柛顐g箖閿涘秵淇婇銏狀伃闁哄矉绲鹃幆鏃堫敍濠婂憛锝夋⒑閸濄儱校闁绘濮撮悾鐑藉閵堝懐顔掑銈嗘⒒閺咁偊宕㈤幖浣光拺闁告稑锕ョ粈瀣箾娴e啿娲﹂崐鍫曟煥濠靛棙顥撳ù婊勭矒閺岀喓鈧稒岣跨粻鏍ь熆鐠哄搫顏紒杈ㄥ笧閳ь剨缍嗘禍璺何熼埀顒勬⒑缁洘鏉归柛瀣尭椤啴濡堕崱妤€娼戦梺绋款儐閹瑰洭寮诲鍥ㄥ珰闁哄被鍎卞鏉库攽閿熺姷鐣哄ù婊冪埣瀵顓奸崼顐n€囬梻浣告啞閹稿鎮烽埡浣烘殾妞ゆ牗绋戦閬嶆倵濞戞顏呯椤栨埃鏀介柣鎰级閳绘洖霉濠婂嫮绠炵€殿喗鐓¢、妤呭礋椤掆偓閳ь剙鐖奸弻锝夊箛椤旇姤姣勯梺纭呮閸婂潡寮诲☉銏犖ч柛銉仢閵忋倖顥嗗璺侯儑缁♀偓婵犵數濮撮崐鎼佸汲閿濆棎浜滈幖娣焺濞堟洟鏌曢崶褍顏柛鈺冨仱椤㈡﹢鎮欏顔荤棯濠电姵顔栭崹閬嶅箰閹惰棄钃熼柨鐔哄Т閻愬﹪鏌嶆潪鎵妽闁诲繋绶氬娲川婵犲嫭鍠涢梺绋款儐閹瑰洤顫忕紒妯诲闁告縿鍎虫婵犵數鍋橀崠鐘诲幢閹邦亝鐫忛梻浣虹帛閸旀寮崫銉т笉闁哄啫鐗婇悡娆撴煙椤栧棗鑻▓鍫曟⒑瀹曞洨甯涙慨濠傜秺楠炲牓濡搁妷搴e枔閹风娀骞撻幒婵囨祰闂傚倷鐒﹂幃鍫曞磹瑜忕划濠氬箻鐠囪尪鎽曢梺缁樻濞咃綁鎯屽▎鎾寸厵缂佸鐏濋銏ゆ煙椤旂晫鎳囨慨濠勫劋鐎电厧鈻庨幋鐘樻粎绱撴担鍝勑i柣妤佹礋椤㈡岸鏁愭径妯绘櫇闂佸啿鐏堥弲婊堟倵婵犳碍鈷戠憸鐗堝笒娴滀即鏌涘Ο鍝勨挃缂侇喗鐟╁畷鐔碱敍濞戞帗瀚奸梻浣告贡鏋繛瀵稿厴閸┿儲寰勯幇顓犲幐闂佸壊鍋掗崑鍕櫠鐎电硶鍋撶憴鍕缂傚秴锕ユ穱濠傤潰瀹€濠冃┑鐘愁問閸ㄤ即濡堕幖浣歌摕婵炴垶菤濡插牊鎱ㄥΔ鈧悧濠囧极閸撗呯=濞达絽鎼牎闁汇埄鍨抽崑銈夊春閳ь剚銇勯幒鍡椾壕闂佽绻戦懝楣冣€﹂崹顕呮建闁逞屽墴楠炲啳顦圭€规洖宕湁闁哄瀵ч崰妯尖偓瑙勬礈鏋摶鏍归敐澶嬫珳闁汇儺浜缁樻媴娓氼垱鏁梺瑙勬た娴滎亜顫忔禒瀣妞ゆ牗绋掑▍鏍⒑閸濆嫮鈻夐柛妯圭矙閹ょ疀濞戞瑧鍘遍梺鏂ユ櫅閸燁垳绮堥埀顒€顪冮妶蹇曞矝闁哄棙绔糴婵犵數濮烽弫鍛婃叏娴兼潙鍨傞柛锔诲幘缁€濠傗攽閻樺弶鎼愰柣鎺戠仛閵囧嫰骞掑鍫濆帯闂佹剚鍨卞ú鐔煎蓟閺囥垹骞㈡俊銈傚亾闁哄棴缍侀弻锛勪沪閸撗勫垱濡ょ姷鍋炵敮锟犵嵁鐎n喗鍊婚柛鈩冿供濡冣攽閿涘嫬浜奸柛濠冪墱閺侇噣鎮欓崫鍕崶闂佸綊鍋婇崰姘舵儗濞嗗繆鏀介柣妯哄级婢跺嫰鏌涚€n偄濮嶉柡宀嬬秮婵偓闁靛繆鍓濆В鍕煛娴e摜澧︽慨濠勭帛閹峰懐绮欓幐搴♀偓顖氣攽閻橆喖鐏柨鏇樺灩閻g兘顢涘☉姗嗗殼闁诲孩绋掗敋濞存粠鍨跺娲川婵犲嫮鐣垫繝娈垮灥妞存悂骞嗛弮鍫濐潊闁挎稑瀚倴濠碉紕鍋戦崐鏍礉濡ゅ懎绐楅幖娣灮椤╂彃螖閿濆懎鏆為柣鎾寸洴閺屾盯濡烽敐鍛瀴闂佹眹鍔嶉崹鍧楀蓟閿濆鍋勯柛娆忣槹閻濇棃姊虹€圭姵顥夋い锔炬暬閻涱喖螣閼测晝顦╅梺缁樏畷顒勵敆閵忊€茬箚闁绘劦浜滈埀顒佺墪鐓ゆ繝闈涙閺嬪秹鏌¢崶鈺佷憾缂傚倹宀搁悡顐﹀炊閵娧€妲堥悗鐟版啞缁诲啴濡甸崟顖氱婵°倐鍋撻柛鐕佸灦椤㈡瑩鏁撻敓锟�20濠电姴鐥夐弶搴撳亾濡や焦鍙忛柣鎴f绾惧鏌eΟ娆惧殭缂佺姴鐏氶妵鍕疀閹炬惌妫″銈庡亝濞叉ḿ鎹㈠┑瀣棃婵炴垵宕崜鎵磽娴e搫校闁搞劌娼″濠氬Χ閸℃ê寮块梺褰掑亰閸忔﹢宕戦幘婢勬棃鍩€椤掑嫬鐓濋柡鍐ㄧ墕椤懘鏌eΟ鐑橆棤闁硅櫕鎹囬妶顏呭閺夋垹顦ㄩ梺鍐叉惈閿曘儵鏁嶉崨顖滅=闁稿本鐟чˇ锔姐亜閿旇鐏︽い銏″哺椤㈡﹢濮€閻橀潧濮︽俊鐐€栧濠氬磻閹惧绡€闁逞屽墴閺屽棗顓奸崨顖ょ幢闂備胶绮濠氬储瑜斿鍛婄瑹閳ь剟寮婚弴銏犻唶婵犲灚鍔栨晥闂備胶枪妤犲摜绮旇ぐ鎺戣摕婵炴垯鍨归崡鎶芥煏婵炲灝鍔氭い顐熸櫊濮婄儤瀵煎▎鎴犳殸缂傚倸绉撮敃顏堢嵁閸愩剮鏃堝礃閳轰焦鐎梻浣告啞濞诧箓宕f惔銊ユ辈闁跨喓濮甸埛鎴︽煕濠靛棗顏い銉﹀灴閺屾稓鈧綆鍋呭畷灞炬叏婵犲啯銇濈€规洦鍋婂畷鐔煎垂椤愬诞鍥ㄢ拺闁告稑锕ラ埛鎰版煟濡ゅ啫鈻堟鐐插暣閺佹捇鎮╅搹顐g彨闂備礁鎲″ú锕傚礈濞嗘挻鍋熷ù鐓庣摠閳锋垿姊婚崼鐔恒€掔紒鐘冲哺閺屾盯骞樼€靛摜鐤勯梺璇″枓閳ь剚鏋奸弸搴ㄦ煙闁箑鏋ゆい鏃€娲樼换婵嬪閿濆棛銆愬銈嗗灥濡稓鍒掗崼銉ョ劦妞ゆ帒瀚崐鍨箾閸繄浠㈡繛鍛Ч閺岋繝鍩€椤掑嫬纭€闁绘垵妫楀▓顐︽⒑閸涘﹥澶勯柛瀣浮瀹曘儳鈧綆鍠楅悡鏇㈡煛閸ャ儱濡兼鐐瓷戞穱濠囧矗婢跺﹦浼屽┑顔硷攻濡炶棄鐣烽锕€绀嬫い鎰枎娴滄儳霉閻樺樊鍎滅紓宥嗙墪椤法鎹勯悜妯绘嫳闂佺ǹ绻戠划鎾诲蓟濞戙埄鏁冮柨婵嗘椤︺劑姊洪崫鍕闁告挾鍠栭獮鍐潨閳ь剟骞冨▎鎾搭棃婵炴垶顨呴ˉ姘辩磽閸屾瑨鍏屽┑顔炬暩閺侇噣鍨鹃幇浣圭稁婵犵數濮甸懝楣冩倷婵犲洦鐓ユ繝闈涙閸gǹ顭跨憴鍕婵﹥妞介幊锟犲Χ閸涱喚鈧儳鈹戦悙鎻掔骇闁搞劌娼¢獮濠偽旈崘鈺佺/闁荤偞绋堥崜婵嬫倶娓氣偓濮婅櫣娑甸崨顔兼锭闂傚倸瀚€氭澘鐣烽弴銏犵闁挎棁妫勯埀顒傛暬閺屻劌鈹戦崱娑扁偓妤侇殽閻愮榿缂氱紒杈ㄥ浮閹晛鐣烽崶褉鎷伴梻浣告惈婢跺洭宕滃┑鍡╁殫闁告洦鍋€濡插牊绻涢崱妤佺濞寸》鎷�