关键词: 多光子纠缠/
自发参量下转换/
超纠缠态
English Abstract
Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term
He Ying-Qiu1,Ding Dong2,
Peng Tao2,
Yan Feng-Li3,
Gao Ting4
1.Department of Biomedical Engineering, Chengde Medical University, Chengde 067000, China;
2.College of Science, North China Institute of Science and Technology, Beijing 101601, China;
3.College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050024, China;
4.College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11475054, 11371005, 11547169), the Hebei Natural Science Foundation of China (Grant Nos. A2016205145, A2018205125), the Foundation for High-Level Talents of Chengde Medical University, China (Grant No. 201701), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. 3142017069, 3142015044), and the Research Project of Science and Technology in Higher Education of Hebei Province of China (Grant No. Z2015188).Received Date:13 October 2017
Accepted Date:18 December 2017
Published Online:20 March 2019
Abstract:Nowadays,the generation of multiphoton entangled states is almost realized by combining the coupled entangled photons emitted from spontaneous parametric down-conversion (SPDC) with the first-order term.In this case,one may focus mainly on the first-order term,and then avoid multipair emission events by restricting experimental parameters.On the other hand,for the higher-order terms in SPDC source,these emitted entangled photons have interesting features.For example,they are entangled maximally not only in photon number for the spatial modes,but also in polarization degree of freedom.In general,two photons,which are entangled in two or more degrees of freedom,are called hyperentangled pair of photons or hyperentangled state.We present a scheme to generate the four-photon hyperentangled state based on four indistinguishable photons emitted from SPDC source with the second-order term.Consider two SPDC sources with equal probability of emission of photons in respective spatial modes.With the passive linear optical devices,i.e., beam splitters,half wave plates,polarizing beam splitters,etc.,under the condition of registering a specified four-photon coincidence,we can obtain the four-photon hyperentangled state in which the photons are entangled in both polarization and spatial-mode degrees of freedom.Here,of course,for an arbitrary fourfold coincidence detection,one obtains a canonical four-photon Greenberger-Horne-Zeilinger (GHZ) state.Then we show the results of fourfold coincidence detections and the corresponding probabilities for the four-photon GHZ states,where the generation of the four-photon hyperentangled state is included as long as we are not to distinguish the two detectors located at the same locations. As a result,our scheme has two notable features.When we only consider the second-order emission,since it is not needed for us to distinguish between the two SPDC sources,the present scheme is simple and feasible.Also,based on the postselection with fourfold coincidence detection,our scheme is suitable for the normal first-order emission where we restrict the four photons emitted from the same source.In this sense,our scheme is efficient.In a word,we describe a method to generate the four-photon hyperentangled state with the second-order emission in SPDC source,which may contribute to the exploration of multipair entanglement with higher-order emissions from the SPDC source.
Keywords: multiphoton entanglement/
spontaneous parametric down-conversion/
hyperentangled state