关键词: 纵波光学声子耦合/
电磁诱导透明/
半导体量子阱
English Abstract
Controlling of dark or bright soliton type in a cascade-type electromagnetically induced transparency semiconductor quantum well by the coupling longitudinal optical phonons
Tang Hong1,Wang Deng-Long1,
Zhang Wei-Xi2,
Ding Jian-Wen1,
Xiao Si-Guo1
1.School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China;
2.College of Physics and Electronic Engineering, Tongren University, Tongren 554300, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11474245, 11374252, 51372214) and the Scientific Research Fund of Guizhou Provincial Education Department, China (Grant Nos. KY(2015)384, KY(2015)446).Received Date:19 April 2016
Accepted Date:03 October 2016
Published Online:05 February 2017
Abstract:In the past few years, with developing the technology of electromagnetically induced transparency (EIT) and improving the semiconductor technology, it has become possible to realize the application of optical soliton to communication device. Studies show the reduction of group velocity of the optical soliton in EIT medium under weak driving condition, which possibly realizes the storing of optical pulses in information storage. More importantly, semiconductor quantum wells have the inherent advantages such as large electric dipole moments of the transitions, high nonlinear optical coefficients, small size, easily operating and integrating. So it is considered to be the most potential EIT medium to realize the application of quantum devices. The optical soliton behavior in the semiconductor quantum well is studied, which can provide a certain reference value for the practical application of information transmission and processing together quantum devices.Although there has been a series of researches on both linear and nonlinear optical properties in semiconductor quantum wells structures, few publications report the effects of the cross-coupling longitude-optical phonon (CCLOP) relaxation on its linear and nonlinear optical properties. However, to our knowledge, the electron-longitude-optical phonon scattering rate can be realized experimentally by varying the sub-picosecond range to the order of a picosecond. According to this, we in the paper study the effects of the CCLOP relaxation on its linear and nonlinear optical properties in a cascade-type three-level EIT semiconductor quantum well.According to the current experimental conditions, we first propose a cascade-type three-level EIT semiconductor quantum well model. And in this model we consider the longitudinal optical phonons coupling between the bond state and anti-bond state. Subsequently, by using the multiple-scale method, we analytically study the dynamical properties of solitons in the cascade-type three-level EIT semiconductor quantum well with the CCRLOP. It is shown that when the CCRLOP strength is smaller, there exhibits the dark soliton in the EIT semiconductor quantum well. Only if the strength of the CCRLOP is larger, will in the system there exists bright soliton. That is to say, with increasing the strength of the CCRLOP, the soliton type of the system is converted from dark to bright soliton little by little. So, the temporal soliton type can be effectively controlled by the strength of the CCRLOP. In addition, we also find that the group velocity of the soliton can also be controlled by the strength of CCRLOP and the control light. These results may provide a theoretical basis for manipulating experimentally the dynamics of soliton in semiconductor quantum wells.
Keywords: cross-coupling relaxation of longitudinal optical phonons/
electromagnetically induced transparency/
semiconductor quantum wells