关键词: L12-Al3Sc/
点缺陷浓度/
弹性模量/
第一性原理
English Abstract
Effects of point defect concentrations on elastic properties of off-stoichiometric L12-type A13Sc
Zhang Chao-Min1,2,Jiang Yong2,3,
Yin Deng-Feng1,2,3,
Tao Hui-Jin2,3,
Sun Shun-Ping4,
Yao Jian-Gang1
1.Mathematics and Physics Department, College of Engineering, Yantai Nanshan University, Longkou 265713, China;
2.School of Materials Science and Engineering, Central South University, Changsha 410083, China;
3.Key Lab for Nonferrous Materials of Ministry of Education, Central South University, Changsha 410083, China;
4.School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China
Fund Project:Project supported by the Science and Technology Development Plan of Shandong Province, China (Grant No. 2014GGX102006) and the Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J14LJ51).Received Date:25 June 2015
Accepted Date:22 January 2016
Published Online:05 April 2016
Abstract:Elastic properties and phase stabilities of L12-A13Sc precipitate phase in Al-Sc alloys have been topics of experimental and theoretical research over the past years. However, these properties of off-stoichiometric L12-A13Sc have not been investigated. Firstly, in combination with Wagner-Schottky model, the first-principles total energy calculations based on density functional theory are performed to study point defect concentrations of intermetallic L12-A13Sc each as a function of temperature and alloy composition. We calculate the point defect formation enthalpies and plot the point defect density curves of stoichiometric and off-stoichiometric L12-A13Sc at 1000 K. The results show that within the whole temperature range (300-1200 K), Al and Sc vacancies dominate on stoichiometric L12-A13Sc but with low concentrations (~10-6 even at 1200 K); on the Al-rich side of off-stoichiometric L12-A13Sc, the Al anti-site and the Sc vacancy concentrations dominate, and their concentrations are comparable, however, on Sc-rich side of off-stoichiometric L12-A13Sc, the Sc anti-site defect dominates. Furthermore, the lattice constants and the elastic constants of stoichiometric and off-stoichiometric L12-A13Sc are calculated, and it is worth noting that 222 supercell models with a point defect are used for off-stoichiometric L12-A13Sc in the calculation. Then employing calculated elastic constants, the values of Youngs modulus, shear modulus, bulk modulus, anisotropic index, G/B ratio, Cauchy pressure, and Poisson ratio of stoichiometric and off-stoichiometric L12-A13Sc are computed. And lastly, combining these data with point defect concentrations of off-stoichiometric L12-A13Sc at 1000 K, the comprehensive effects of four point defects on elastic properties of L12-A13Sc are evaluated. The four point defects coexist in L12-A13Sc as we know from the calculations of equilibrium point defect density. The conclusions are as follows. 1) The point defects can cause off-stoichiometric L12-A13Sc lattice distortion. On the Sc-rich side, lattice constant appears to be an increasing tendency, from 4.105 to the biggest value of ~4.13 (~0.5% growth), while on the Al-rich side, it shows an opposite trend, from 4.105 to the smallest value of ~4.10 (~0.24% fall). Although there is the lattice distortion in off-stoichiometric L12-A13Sc, off-stoichiometric L12-A13Sc can still keep stable crystal structure for the value of xAl in a range of 0.72-0.78. 2) The point defects also affect elastic constants of off-stoichiometric L12-A13Sc. Specifically, on the Sc-rich side, elastic constant c11 decreases with the increase of deviation degree of stoichiometric ratio, and the maximal reduction is ~9% at xAl = 0.72, while elastic constants c12 and c44 show the opposite variation trends, and the maximal increase is ~8% at xAl = 0.72. On the Al-rich side, there are little changes for elastic constants c11, c12 and c44. 3) The point defects obviously increase the elastic anisotropy of off-stoichiometric L12-A13Sc, and especially on the Sc-rich side, the notable increase is found, which jumps from 1.610-6 to 0.04. 4) The values of Youngs modulus, shear modulus, and bulk modulus of off-stoichiometric L12-A13Sc decrease due to point defects, with the maximal reduction being 3%-4%. These elastic modules fall first rapidly and then slowly on the Sc-rich side, while they present approximately a linear downward trend on the Al-rich side. In addition, weak influences are exerted on brittleness and toughness of off-stoichiometric L12-A13Sc by the point defects, compared with the other elastic effects mentioned above.In summary, in the scope of xAl = 0.72-0.78, the point defects can not only reduce Youngs modulus, shear modulus, and bulk modulus of off-stoichiometric L12-A13Sc, but also increase the anisotropies of the elastic properties of off-stoichiometric L12-A13Sc. However, the point defects have weak influences on the brittleness and toughness of off-stoichiometric L12-A13Sc.
Keywords: L12-Al3Sc/
point defect densities/
elastic modulus/
first-principles