关键词: 面心立方固溶体/
团簇加连接原子模型/
几何结构模型/
合金成分设计
English Abstract
Cluster-plus-glue-atom model of FCC solid solutions and composition explanation of typical industrial alloys
Hong Hai-Lian1 2,Dong Chuang1,
Wang Qing1,
Zhang Yu1,
Geng Yao-Xiang1
1.Key Laboratory of Materials Modification (Ministry of Education), Dalian University of Technology, Dalian 116024, China;
2.School of Mechanical and Electrical Engineering, Sanming University, Sanming 365004, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11174044) and the Grade A Natural Science Research Project of Fujian Province Education Department, China (Grant No. JA12306).Received Date:26 June 2015
Accepted Date:19 October 2015
Published Online:05 February 2016
Abstract:It was found previously by us that the compositions of industrial alloy specializations are related to the chemical short-range ordering in solid solution alloys, which is in accordance with the cluster-plus-glue-atom model. This model identifies short-range-ordered chemical building units in solid solutions, which the specific alloy compositions rely on. For instance, substitutional-type FCC solid solution alloys are described by cluster-based units formulated as [cluster](glue atom)16, where the bracketed cluster is the nearest-neighbor coordination polyhedral cluster, cuboctahedron in this case, and one-to-six glue atoms occupy the inter-cluster sites at the outer-shell of the cluster. In the present paper, we investigate the atomic configurations of these local units in substitutional-type FCC solid solutions by exhausting all possible cluster packing geometries and relevant cluster formulas. The structural model of stable FCC solid solutions is first reviewed. Then, solute distribution configurations in FCC lattice are analyzed by idealizing the measured chemical short-range orders within the first and second neighborhoods. Two key assumptions are made with regards to the cluster distribution in FCC lattice. First, the clusters are isolated to avoid the short-range orders from extending to longer range ones. Second, the clusters are at most separated by one glue atom to confine the inter-cluster distances. Accordingly, only a few structural unit packing modes are identified. Among them, the configurations with glue atoms 0, 1, 3, and 6 show good homogeneities which indicate special structural stabilities. Finally, compositions of FCC Cu-Zn (representative of negative enthalpy systems) and Cu-Ni (positive enthalpy ones) industrial alloys are explained by using the structure units of cluster packing and the cluster formulas, expressed as [Zn-Cu12]Zn1-6 and [Zn-Cu12](Cu, Zn)6, where the cluster is Zn-centered, shelled with Cu atoms, and glued with one to six Zn or with a mixture of six Cu and Zn. In particular, the formula [Zn-Cu12]Zn6, with the highest Zn content, corresponds to the solubility limit in Cu-Zn alpha phase zone, which is also the composition of the specification C27400. The Cu-rich Cu-Ni alloys are explained by cluster formulas [Cu-Cu12](Cu, Ni) 6, where the cluster is Cu centered and glued with a mixture of six Cu and Ni. The Ni-rich Monel alloy is explained by cluster formulas [Ni-Ni12](Cu5Ni)-[Ni-Ni12]Ni6. The present work provides a new approach to alloy composition explanation and eventually to alloy composition design from the perspective of short-range ordering in solid solutions.
Keywords: FCC solid solution/
cluster and glue atom model/
structure model of geometry/
composition design of alloys