关键词: 时标激光/
任意反射面速度干涉仪光源/
冲击波测量
English Abstract
Research of time fiducial laser and probe laser of velocity interferometer system for any reflector for Shenguang-III laser facility
Zhang Rui,Tian Xiao-Cheng,
Zhou Dan-Dan,
Zhu Na,
Wang Zhen-Guo,
Li Hong-Xun,
Wang Jian-Jun,
Li Ming-Zhong,
Xu Dang-Peng,
Dang Zhao,
Hu Dong-Xia,
Zhu Qi-Hua,
Zheng Wan-Guo,
Wang Feng
1.Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 61475145).Received Date:06 April 2015
Accepted Date:20 September 2015
Published Online:20 January 2016
Abstract:Time fiducial laser is an important timing marker for different diagnostic instruments in high energy density physics experiments. The probe laser in velocity interferometer system for any reflector (VISAR) is also vital for precise shock wave diagnosis in inertial confinement fusion (ICF) research. Here, time fiducial laser and VISAR probe laser are generated from one source in SG-III laser facility. After generated from a 1064 nm DFB laser, the laser is modulated by an amplitude modulator driven by a 10 GS/s arbitrary waveform generator. Using time division multiplexing technology, the ten-pulse time fiducial laser and the 20 ns pulse width VISAR probe laser are split by a 12 multiplexer and then the time fiducial and VISAR pulses will be selected individually by acoustic-optic modulators. Using this technology, the cost for the system can be reduced. The technologies adopted in the system also include pulse polarization stabilization, high stable Nd: YAG amplification, high precision thermally controlled frequency conversion, fiber coupling, and energy transmission. The fiber laser system is connected to the Nd: YAG rod amplifier stage with polarizing (PZ) fibers to maintain the polarization state. The output laser of Nd: YAG amplification stage is coupled with different kinds of energy transfer fibers to propagate enough energy and maintain the pulse shape for the time fiducial and VISAR probe laser. The input and output fibers are all coupled to the rod amplifiers with high precision and being easy to plug and play for users. Since the time fiducial and imaging VISAR laser system is far from the front end room and located in the target area, the system also uses an arbitrary waveform generator (AWG) to generate the shaped ten-pulse time fiducial laser and 20 ns VISAR laser. This AWG and the other three AWGs used for the main laser pulse of SG-III laser facility will be all synchronized by 10 GHz clock inputs, realizing the smaller than 7 ps (RMS) jitter between the main laser pulse, time fiducial laser and VISAR pulse. After amplification and frequency conversion, the time fiducial laser finally generates 12 beam 2 and 4-beam 3 laserbeams, providing important reference marks for different detectors in the ICF experiments and making it convenient for the analysis of multiple diagnostic data. The VISAR laser pulse is also amplified by the Nd: YAG amplifiers and frequency-converted to 532 nm green light by a thermally controlled LBO crystal, with output energy larger than 20 mJ. Finally, the 532 nm VISAR probe laser beam is coupled with a 1-mm core diameter fused silica optical fiber, and then propagates 30 meters to the imaging VISAR system. The VISAR probe laser has been used in many high energy density physics experiments. The shock wave loading and slowdown processes are measured. Function for measuring velocity history of shock wave front movement in different kinds of materials can be also added to the SG-III laser facility.
Keywords: time fiducial laser/
probe laser of velocity interferometer system for any reflector/
shock wave diagnosis