删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

多探针扫描隧道显微镜分时复用切换技术研发进展

本站小编 Free考研考试/2021-12-27

科学仪器的发展,不断促进对新材料的探索,从而直接或间接影响各科技领域的方方面面。工欲善其事必先利其器,深化与落实科学仪器的自主研发,更是科技攻关的桥头堡。扫描隧道显微镜(STM),及一系列扫描探针显微镜(SPM) :原子力显微镜(AFM)、扫描近场光学显微镜(SNOM) 等,掀起一场纳米技术革命,广泛应用于材料表面纳米尺度局域电子态、形貌以及分子振动等丰富物性的研究。电输运性质作为材料的关键参数,被广泛关注。集成多个独立STM的多探针STM系统,通过施加电/力等调控手段,实现纳米尺度、原位表征材料局域电子态与局域电输运性质,有望加速后摩尔时代新器件的基础研究。四探针 STM 可实现微观体系的四端法测量,有效消除接触电阻带来的测量误差,获得材料的本征电导率。
  多个独立探针的协同操纵和成像,往往需要相同数量的多套STM控制系统。随着STM探针/压电驱动部件的增加,多探针控制系统的成本和复杂度急剧增加。因此,发展低成本、高效率、可扩展的通用控制解决方案,实现STM控制系统分时操纵多个探针、乃至探针阵列的技术十分必要。
  中国科学院物理研究所/北京凝聚态物理国家研究中心高鸿钧研究团队多年来一直致力于扫描探针显微学及其在低维量子结构方面的应用,在前沿科学研究取得一系列重要成果。同时,他们也在相关高精尖仪器自主研制方面不断积累,奠定了扎实的基础。物理所技术部郇庆/刘利团队一直致力于科研仪器设备的自主研发,与所内外多个课题组紧密合作,在核心关键部件、成套系统等方面取得了一系列成果(包括一台商业化四探针系统的彻底升级改造【Review of Scientific Instruments, 88(6):063704, 2017】、光学-低温扫描探针显微镜超高真空联合系统【Review of Scientific Instruments 89, 113705 (2018)】和新一代高通量薄膜制备及原位表征系统【Review of Scientific Instruments 91, 013904 (2020)】的自主研制)。两个团队再次密切合作、联合攻关,共同指导N04组博士生严佳浩(已毕业,爱尔兰科克大学博士后)、马佳俊、王爱伟(已毕业,国家纳米中心博士后)、马瑞松(已毕业,物理所关键技术人才)等同学成功研制并搭建了一台多探针STM分时复用切换系统,完成单个STM控制系统依次操纵多个探针在纳米尺度下的成像与定位,以及维持探针位置后的局域电输运测量。该系统采用的核心思路为研发团队首次提出,软硬件均完全自主研发,采用了ARM + DSP + FPGA多核数字平台来兼备复杂切换逻辑、多路高精度高速并行采样与数据处理,涉及C/C++与Verilog HDL编程语言,并提供图形操作界面以提高易操作性,具备多项独特优点:1)单个探针内大、小扫描管及多个探针间的无缝切换,无瞬态抖动;2)皮安级电流切换;3)任意单个探针具备毫米级移动范围与原子级空间分辨;4)多个探针可无限靠近,最小距离仅取决于针尖曲率半径;5)原位、纳米尺度、相同区域内,STM成像与电输运测量。
  该联合研发团队用6年多时间对系统进行了反复地设计优化和改进,并进行了全面性能测试。该研发成果所涉及的多项关键技术,如微弱信号的放大与切换、高稳定电压保持、复杂控制逻辑等,是未来大规模探针阵列应用的重要技术基础。分时切换的核心思路具有可扩展性强、成本低廉的特点,有望在材料基因组研究高通量表征领域有广泛的应用。
  该系统的详细介绍发表在近期的《科学仪器评论》杂志上【Review of Scientific Instruments 92, 103702 (2021); doi: 10.1063/5.0056634】。该工作得到了中国科学院关键技术研发团队项目(GJJSTD20200005)、国家自然科学基金国家重大科研仪器研制项目(11927808)和国家自然科学基金委青年基金项目(12004417)等的支持。

图1:分时复用切换方案

图2:分时复用系统硬件设计

图3:分时复用切换系统软件架构

图4:分时复用切换系统部分图形用户界面

图5:单STM探针空间定位

图6: 多探针切换与空间定位

Rev. Sci. Instrum. 92, 103702 (2021).pdf
相关话题/系统 纳米 材料 测量 毕业

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于材料基因工程发现材料非晶形成能力的判据
    非晶玻璃材料是典型的复杂体系。其中,非晶合金(又称为金属玻璃)兼具金属和玻璃、固体和液体的特征,呈现优异的机械、物理和化学性能,在高端装备、能源、信息等高技术领域有重要应用。非晶合金也是研究、认识复杂体系中科学问题和现象的重要材料模型。  一般认为,任何金属或合金在特定条件下都可以形成非晶态材料,其 ...
    本站小编 Free考研考试 2021-12-27
  • 相对论激光驱动的超快X射线衍射系统的研制
    在超快时间尺度上获得物质的动力学演化过程一直是人们努力的重要方向。基于激光等离子体相互作用产生的飞秒硬X射线源由于具有脉宽短、亮度高和源尺寸小等突出的优点,可广泛应用于瞬态微成像/相衬成像、时间分辨吸收谱学和X射线衍射等实验研究中。其中,激光泵浦--超快X射线衍射的手段能为我们提供飞秒级时间尺度、亚 ...
    本站小编 Free考研考试 2021-12-27
  • 国际首台大动量极低温深紫外激光角分辨光电子能谱系统研制成功并投入使用
    角分辨光电子能谱技术(ARPES)是当代凝聚态物理和材料科学研究中能直接测量电子结构的最重要的实验手段。在众多前沿物理问题的研究中,如高温超导体和其它非常规超导体的超导机理、拓扑材料的探索以及二维材料的超导与奇异物性等方面,角分辨光电子能谱技术都发挥着至关重要的作用。随着研究问题的深入,对光电子能谱 ...
    本站小编 Free考研考试 2021-12-27
  • 新型二维磁性材料VTe2中的奇异磁性和多铁性
    低维磁性体系以其新奇的晶体结构和量子特性,在自旋电子学等方面具有广阔的应用前景。磁性多层薄膜CrI3的成功制备,使二维磁性材料的发现和探索成为凝聚态物理科学研究的重要前沿。目前,低维磁性半导体的研究主要集中在两方面:通过外延生长发现新的磁性材料,和调控磁性以探究独特的磁作用机制。多种二维磁性材料,如 ...
    本站小编 Free考研考试 2021-12-27
  • “听风辨器”——关联电子系统中的太赫兹光回波与元激发时空干涉
    多数物理实验技术通过线性响应来探测材料的物理性质,而新发展起来的非线性谱学则是通过探测材料的非线性响应来获得体系更多的信息。这类新谱学技术的代表之一是二维相干光谱学——该技术运用多个光脉冲激发体系,然后测量体系的非线性响应。在红外、可见光、与紫外波段,这一强有力的谱学手段被广泛应用于化学、生物学等领 ...
    本站小编 Free考研考试 2021-12-27
  • 强自旋-轨道耦合材料(InSb)纳米线和超导体复合“岛”的电子奇偶性完整相图
    近日,中国科学院物理研究所/北京凝聚态物理国家研究中心Q02组的沈洁特聘研究员和荷兰代尔夫特理工大学Leo Kouwenhoven组、微软-代尔夫特量子实验室、荷兰爱因霍弗理工大学Erik Bakker组合作,在强自旋-轨道耦合材料InSb纳米线和超导铝的复合系统做成的量子器件——“马约拉纳岛”中测 ...
    本站小编 Free考研考试 2021-12-27
  • 原位测量量子液体中同位素杂质浓度技术
    氦是最轻的单原子分子,由不确定性关系可知在液相或固相中氦原子具有非常剧烈的量子零点运动,因此是研究量子液体与量子固体最合适的体系。氦同时也是最纯净的体系—所有由其他元素构成杂质都将因为范德华相互作用被吸附固定,从而不会影响氦本身的性质。但是由于氦存在两种稳定同位素4He和3He,因此同位素杂质成为极 ...
    本站小编 Free考研考试 2021-12-27
  • 可以自发改变颜色的金属材料
    颜色是商品外观设计的重要属性。彩色的电子产品金属外壳不仅满足了人们的审美需求,也增加了商品的附加价值。电化学沉积是目前广泛应用的金属合金表面着色技术,其颜色来自于由表面氧化层厚度所决定的可见光干涉。因为该氧化层的厚度在产品的使用过程中不会改变,所以这项技术所实现的产品颜色在使用过程中是固定的。  最 ...
    本站小编 Free考研考试 2021-12-27
  • 基于软模板的原子层组装技术实现多重纳米结构的精准调控加工
    利用各种纳米加工技术制备的纳米结构和器件在微纳光子学、微纳电子学、生物学及纳米能源等领域发挥了非常重要作用,但同时也对纳米加工的尺寸、形状、空间排列和组装等工艺控制提出了越来越高的要求。现有的传统纳米加工技术,例如电子束曝光、聚焦离子束直写、阳极氧化和自组装技术通常在实现无序、杂化、不规则及变径等特 ...
    本站小编 Free考研考试 2021-12-27
  • 从磁性到热电:磁性材料中热电效应的热力学起源
    热电效应在基础物理方面是反应电子能带结构以及弛豫行为的复杂输运现象,而在实现功能特性方面却非常简单,可以被用来进行温差和电能之间的直接相互转换,是理想的固态制冷和温差发电材料。如何提高热电材料的转换效率是一个在凝聚态和材料物理领域广泛关注的重要问题。近年来,越来越多的研究显示磁性和热电效应具有密切的 ...
    本站小编 Free考研考试 2021-12-27