近日,中国科学院物理研究所/北京凝聚态物理国家研究中心清洁能源重点实验室E01组博士生容晓晖在胡勇胜研究员、禹习谦副研究员和谷林研究员的指导下,在Cell Press旗下的能源旗舰期刊 《Joule》上发表最新研究成果“Anionic Redox Reaction Induced High-Capacity and Low-Strain Cathode with Suppressed Phase-Transition”。研究者基于前期的阴离子氧化还原的研究基础(Joule, 2, 125-140, 2018),设计了结构和组成为P2-Na0.72[Li0.24Mn0.76]O2的钠离子电池正极材料,发现组装的半电池在1.5-4.5 V之间具有~270 mAh/g的超高可逆比容量,能量密度可达700 Wh/kg,是目前已知具有最高能量密度的钠离子电池正极材料。后与美国布鲁克海文国家实验室胡恩源博士和杨晓青教授、法国波尔多大学Claude Delmas教授等深度合作,通过中子散射、同步辐射技术等先进表征手段细致研究了该材料的电荷补偿机制和结构演化过程,并发现了阴离子氧化还原机制不但可以提供额外的容量,还具有稳定钠离子电池层状结构、减小体积应变的作用,这是该材料具有超高比容量的内在原因。
研究发现P2结构具有较大的层间距(相对O3相),能够容忍O-O键长变化带来的晶格畸变;同时较大的层间距能有效抑制充电过程中阳离子向碱金属层迁移(富锂材料中发生的层状向尖晶石结构相变),保持稳定的层状结构,从而使得氧离子的氧化还原反应可逆。除此之外,由于首周充电电荷补偿全部由氧提供,这就减小了相邻氧层的静电排斥作用,进而抵消由于钠离子脱出而减弱的静电屏蔽效应,从而在充电末仍然稳定了P2型层状结构,且减小了体积应变。
该研究的亮点在于:
①首次报道了具有270 mAh/g可逆比容量(700 Wh/kg)的钠离子电池正极材料,该材料在首周充电时容量完全由晶格氧提供;
②研究发现阴离子氧化还原反应可以抑制P2-O2相变;
③研究发现阴离子氧化还原反应可以减小材料的体积应变。
该研究证明阴离子氧化还原反应在钠离子电池中的现象与锂离子电池中有着较大差别,如何通过某些方式在钠离子电池中完全稳定住阴离子氧化还原反应,是下一重点研究目标,如能达成,将会给钠离子电池的发展带来新的契机。
该研究工作得到了国家重点研发计划(2016YFB0901500)、国家自然科学基金(51725206,51421002和51822211)、北京市科委(Z181100004718008)和中科院物理所长三角研究中心的支持。
文章引用信息:
Rong, X.; Hu, E.; Lu, Y.; Meng, F.; Zhao, C.; Wang, X.; Zhang, Q.; Yu, X.; Gu, L.; Hu, Y.-S.; Li, H.; Huang, X.; Yang, X.; Delmas, C.; Chen, L., Anionic Redox Reaction Induced High-Capacity and Low-Strain Cathode with Suppressed Phase-Transition, Joule 2018, DOI: 10.1016/j.joule.2018.10.022.
文章下载链接:https://www.cell.com/joule/fulltext/S2542-4351(18)30513-0#。
图1. 常见的钠离子电池正极材料的电压、比容量和比能量的关系。 |
图2. P2-Na0.72[Li0.24Mn0.76]O2的电化学性能 (a) 0.05C,1.5-4.5 V首周充放电和第二周充电曲线;(b) 0.05C,1.5-4.5 V和2.0-4.5 V循环曲线。 |
图3. P2-Na0.72[Li0.24Mn0.76]O2的电荷补偿机制 (a) 第一周充放电Mn元素K边的演变;(b) 第二周充电Mn元素K边的演变;(c) P2-Na0.72[Li0.24Mn0.76]O2的电荷补偿机制示意图。 |
图4. 中子对分布函数(neutron pair distribution function, nPDF)研究P2-Na0.72[Li0.24Mn0.76]O2在充放电过程中的结构变化 (a-d) 不同SOC的nPDF结果拟合;(e) 不同SOC的nPDF结果以及理论结果对比;(f) 根据nPDF拟合结果的不同SOC的O-O键长的变化;(g) P2-Na0.72[Li0.24Mn0.76]O2的结构演变示意图。 |