1. 衡阳师范学院功能金属有机化合物湖南省重点实验室,湖南 衡阳 421008;2. 华南理工大学化学与化工学院,广东 广州 510641
收稿日期:
2017-09-01修回日期:
2017-11-20出版日期:
2018-06-22发布日期:
2018-06-06通讯作者:
刘剑基金资助:
金属微纤复合分子筛膜催化材料的制备与应用基础研究;微纤包覆活性炭-纳米零价铁复合材料对含铅 废水修复研究;活性炭负载纳米CuO/ZnO对含亚甲基蓝废水的吸附性能研究Catalytic Wet Peroxide Oxidation of Methylene Blue Solution Using Fe-5A
Jian LIU1*, Yanxiang WANG1, Gang PENG1, Huiping ZHANG 21. Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hengyang Normal University, Hengyang, Hunan 421008, China; 2. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
Received:
2017-09-01Revised:
2017-11-20Online:
2018-06-22Published:
2018-06-06Contact:
LIU Jian 摘要/Abstract
摘要: 以九水硝酸铁[Fe(NO3)3?9H2O]和柱状5A分子筛为原料采用湿法浸渍法制备Fe?5A催化剂,催化湿式H2O2氧化亚甲基蓝溶液,考察了间歇反应器中pH值和温度对亚甲基蓝转化率的影响及在连续固定床反应器中床层催化剂装填量、进料液流量、温度和亚甲基蓝入口浓度对亚甲基蓝降解性能的影响. 结果表明,在间歇反应中,在亚甲基蓝浓度50 mg/L、温度70℃、pH为2、反应20 min的条件下,亚甲基蓝的转化率为95.9%. 固定床反应中,随温度降低及进料液流量增加,亚甲基蓝转化率降低;随亚甲基蓝入口浓度增加,亚甲基蓝和化学需氧量(COD)的转化率变化幅度很小. 在温度70℃及pH=2、进料液流量4 mL/min、Fe?5A催化剂装填量1.25 g、亚甲基蓝浓度50?300 mg/L、固定床连续运转5 h的条件下,亚甲基蓝的转化率超过98%,COD转化率大于82%,铁浸出浓度低于3.5 mg/L,相同条件下,装填2.5 g 5A分子筛的固定床中50 mg/L亚甲基蓝的转化率仅为73.3%.
引用本文
刘剑 汪燕香 彭钢 张会平. Fe-5A催化亚甲基蓝溶液湿式H2O2氧化[J]. 过程工程学报, 2018, 18(3): 646-651.
Jian LIU Yanxiang WANG Gang PENG Huiping ZHANG. Catalytic Wet Peroxide Oxidation of Methylene Blue Solution Using Fe-5A[J]. Chin. J. Process Eng., 2018, 18(3): 646-651.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217321
http://www.jproeng.com/CN/Y2018/V18/I3/646
参考文献
[1] Chen D, Zeng Z Y, Zeng Y B, et al. Removal of methylene blue and mechanism on magnetic γ-Fe2O3/SiO2 nanocomposite from aqueous solution[J]. Water Resources and Industry, 2016, 15: 1–13 [2] Fu J, Kyzas G Z. Wet air oxidation for the decolorization of dye wastewater: an overview of the last two decades[J]. Chinese Journal of Catalysis, 2014, 35(1): 1–7 [3]田勇,钟国英,王秀芳,等.高比表面磁性有序介孔炭的合成及对亚甲基蓝的吸附性能[J].化工学报,2012,63(12):4082-4088 [4] 孙桂岩,朱婵媛,张悦,等.SiO2纳米纤维的制备及其对亚甲基蓝染料的吸附脱色性能[J].材料导报2014,28(24):51-54 [5] Li H, An N H, Liu G, et al. Adsorption behaviors of methyl orange dye on nitrogen-doped mesoporous carbon materials[J]. Journal of Colloid and Interface Science, 2016, 466: 343–351 [6] Zhang P, Gong J L, Zeng G M, et al. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal[J]. Chemical Engineering Journal, 2017, 322: 657-666 [7] Li X Y, Xu J, Cheng J P, et al. TiO2-SiO2/GAC particles for enhanced electrocatalytic removal of acid orange 7 (AO7) dyeing wastewater in a three- dimensional electrochemical reactor[J]. Separation and Purification Technology, 2017, 187: 303-310 [8] Yaseen D A, Scholz M. Shallow pond systems planted with Lemna minor treating azo dyes[J]. Ecological Engineering, 2016, 94: 295-305 [9] Hassaan M A, Nemr A E, Madkour F F. Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewate[J]. The Egyptian Journal of Aquatic Research, 2017, 43(1): 11-19 [10] Kondru A K, Kumar P, Chand S. Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst[J]. Journal of Hazardous Materials, 2009, 166(1): 342–347 [11] Duarte F, Maldonado-Ho′dar F J, Pe′rez-Cadenas A F, et al. Fenton-like degradation of azo-dye Orange II catalyzed by transition metals on carbon aerogels[J]. Applied Catalysis B: Environmental, 2009, 85(3-4): 139–147 [12]Ramirez J H, Maldonado-Ho′dar F J, Pe′rez- Cadenas A F, et al. Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts[J]. Applied Catalysis B: Environmental, 2007, 75(3-4): 312–323 [13] Herney-Ramirez J, Silva A M T, Vicente M A, et al. Degradation of Acid Orange 7 using a saponite- based catalyst in wet hydrogen peroxide oxidation: Kinetic study with the Fermi’s equation[J]. Applied Catalysis B: Environmental, 2011, 101(3-4): 197–205 [14] Hua L, Ma H R, Zhang L. Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3 [J]. Chemosphere, 2013, 90(2): 143–149 [15] Gao M F, Zhang D D, Li W Y, et al. Degradation of methylene blue in a heterogeneous Fenton reaction catalyzed by chitosan crosslinked ferrous complex[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67: 355-361 [16] Duarte F, Morais V, Maldonado-Hódar F J, et al. Treatment of textile effluents by the heterogeneous Fenton process in a continuous packed-bed reactor using Fe/activated carbon as catalyst[J]. Chemical Engineering Journal, 2013, 232: 34-41 |
相关文章 8
[1] | 马培勇 王田 武晋州 邢献军 张贤文. 响应面法优化制备塑料-锯末活性炭[J]. 过程工程学报, 2019, 19(2): 377-386. |
[2] | 张帆 陈萌萌 邹晋. 液相氧化反应失控过程的动态流程模拟[J]. 过程工程学报, 2018, 18(S1): 89-96. |
[3] | 钟倩倩 赵雅琴 吴爱兵 王磊 沈丽 王鹏. 微波活化稻壳基生物质材料对亚甲基蓝的吸附性能[J]. 过程工程学报, 2018, 18(6): 1210-1218. |
[4] | 彭超 吴照金. α-Fe2O3/ZnFe2O4复合粉体制备及其光催化降解亚甲基蓝[J]. 过程工程学报, 2016, 16(5): 882-888. |
[5] | 孙国瞳胡鹏白柳杨袁方利. 新型固定式ZnO光催化膜反应器的研究[J]. , 2012, 12(1): 172-176. |
[6] | 王亮陈孟林何星存黄智. 改性海泡石对亚甲基蓝的吸附性能[J]. , 2009, 9(6): 1095-1098. |
[7] | 杨合;薛向欣;左良;杨中东. 含钛高炉渣催化剂光催化降解亚甲基蓝[J]. , 2004, 4(3): 265-268. |
[8] | 修国华;刘会洲;李平. 有机相固定化酶催化反应拆分手性化合物?填充床反应器内非定态动力学模型[J]. , 2001, 1(3): 0-0. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3056