1. 北京科技大学能源与环境工程学院,北京 100083; 2. 中国科学院工程热物理研究所,北京 100190
收稿日期:
2017-09-12修回日期:
2017-10-31出版日期:
2018-06-22发布日期:
2018-06-06通讯作者:
李石琨基金资助:
国家重点研发计划资助项目;国家自然科学基金资助项目Dehydrogenation Performance and Reaction Kinetics of Isopropanol in Liquid Film Reactor
Shikun LI1, Min XU2*, Jun CAI2, Xianfang YUE1*, Xiulan HUAI21. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China;2. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
Received:
2017-09-12Revised:
2017-10-31Online:
2018-06-22Published:
2018-06-06摘要/Abstract
摘要: 研究了反应物进料速度、催化剂用量和反应温度对以非晶态合金雷尼镍为催化剂的液膜多相反应模式下异丙醇脱氢反应的影响,考察了反应动力学. 结果表明,温度的影响最显著,与搅拌釜液相脱氢相比,该反应模式有效提升了产氢速率,Langmuir?Hinshelwood反应动力学表达式计算结果与实验结果吻合良好.
引用本文
李石琨 许闽 蔡军 岳献芳 淮秀兰. 液膜反应器中异丙醇脱氢性能及反应动力学[J]. 过程工程学报, 2018, 18(3): 652-656.
Shikun LI Min XU Jun CAI Xianfang YUE Xiulan HUAI. Dehydrogenation Performance and Reaction Kinetics of Isopropanol in Liquid Film Reactor[J]. Chin. J. Process Eng., 2018, 18(3): 652-656.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217333
http://www.jproeng.com/CN/Y2018/V18/I3/652
参考文献
[1] Ajah A N, Mesbah A, Grievink J, et al. On the robustness, effectiveness and reliability of chemical and mechanical heat pumps for low-temperature heat source district heating: a comparative simulation-based analysis and evaluation[J]. Energy, 2008, 33(6): 908-929. [2] Kitikiatsophon W, Piumsomboon P. Dynamic simulation and control of an isopropanol–acetone–hydrogen chemical heat pump[J]. Science Asia, 2004, 30(1): 135-147. [3] Ajah A N, Mesbah A, Grievink J, et al. On the robustness, effectiveness and reliability of chemical and mechanical heat pumps for low-temperature heat source district heating: a comparative simulation-based analysis and evaluation[J]. Energy, 2008, 33(6): 908-929. [4] Kim T G, Yeo Y K, Song H K. Chemical heat pump based on dehydrogenation and hydrogenation of i‐propanol and acetone[J]. International Journal of Energy Research, 1992, 16(9): 897-916. [5] Briggs R A, Taylor H S. The dehydrogenation of normal heptane and cyclohexane on cerium, vanadium and thorium oxide catalysts[J]. Journal of the American Chemical Society, 1941, 63(9): 2500-2503. [6] Saito Y, Aramaki K, Hodoshima S, et al. Efficient hydrogen generation from organic chemical hydrides by using catalytic reactor on the basis of superheated liquid-film concept[J]. Chemical Engineering Science, 2008, 63(20): 4935-4941. [7] Xin F, Xu M, Li X F, et al. Experimental study of isopropanol dehydrogenation over amorphous alloy raney nickel catalysts[J]. Journal of Thermal Science, 2013, 22(6): 613-618. [8] Zhang L, Xu G, An Y, et al. Dehydrogenation of methyl-cyclohexane under multiphase reaction conditions[J]. International Journal of Hydrogen Energy, 2006, 31(15):2250-2255. [9] Kariya N, Fukuoka A, Ichikawa M. Efficient evolution of hydrogen from liquid cycloalkanes over Pt-containing catalysts supported on active carbons under “wet–dry multiphase conditions”[J]. Applied Catalysis A: General, 2002, 233(1): 91-102. [10] Sakurai M, Honda H, Kameyama H. Fundamental study of a non-steady operation for 2-propanol de-hydrogenation[J]. International journal of hydrogen energy, 2007, 32(9): 1303-1308. [11] Shukla A A, Gosavi P V, Pande J V, et al. Efficient hydrogen supply through catalytic dehydrogenation of methylcyclohexane over Pt/metal oxide catalysts[J]. international journal of hydrogen energy, 2010, 35(9): 4020-4026. [12] Ping H, Xu G, Wu S. System optimization of cyclohexane dehydrogenation under multiphase reaction conditions using the uniform design method[J]. international journal of hydrogen energy, 2015, 40(46): 15923-15932. [13] Zhang L, Xu G, An Y, et al. Dehydrogenation of methyl-cyclohexane under multiphase reaction conditions[J]. International journal of hydrogen energy, 2006, 31(15): 2250-2255. [14] Kou Z, Zhi Z, Xu G, et al. Investigation of the performance and deactivation behavior of Raney-Ni catalyst in continuous dehydrogenation of cyclohexane under multiphase reaction conditions[J]. Applied Catalysis A: General, 2013, 467(10): 196-201. [15] Hao L, Zhen S, Tan D, et al. Preparation of novel Raney-Ni catalysts and characterization by XRD, SEM and XPS[J]. Applied Catalysis A General, 2001, 214(1):69-76. [16] Mooksuwan W, Kumar S. Study on 2-propanol/acetone/hydrogen chemical heat pump: endothermic dehydrogenation of 2-propanol[J]. International journal of energy research, 2000, 24(12): 1109-1122. [17] Xu M, Xin F, Li X, et al. Equilibrium model and performances of an isopropanol–acetone–hydrogen chemical heat pump with a reactive distillation column[J]. Industrial & Engineering Chemistry Research, 2013, 52(11): 4040-4048. [18] Sakurai M, Honda H, Kameyama H. Fundamental study of a non-steady operation for 2-propanol de-hydrogenation[J]. International journal of hydrogen energy, 2007, 32(9): 1303-1308. [19] Kariya N, Fukuoka A, Ichikawa M. Efficient evolution of hydrogen from liquid cycloalkanes over Pt-containing catalysts supported on active carbons under “wet–dry multiphase conditions”[J]. Applied Catalysis A: General, 2002, 233(1): 91-102. [20] Kariya N, Fukuoka A, Utagawa T, et al. Efficient hydrogen production using cyclohexane and decalin by pulse-spray mode reactor with Pt catalysts[J]. Applied Catalysis A: General, 2003, 247(2): 247-259. |
相关文章 15
[1] | 郭艳东 张晓春 游琳琳. 水对离子液体微观结构和传输性能的影响[J]. 过程工程学报, 2021, 21(4): 431-439. |
[2] | 张梦秋 靳惠娟 巩方玲 张佑红 韦祎 何玉先 马光辉. 两亲性脂肽纳米混悬液冻干粉的制备及其表征[J]. 过程工程学报, 2021, 21(4): 463-470. |
[3] | 孙晨阳 侯超峰 葛蔚. LJ势氩系统分子动力学模拟中截断半径的选择[J]. 过程工程学报, 2021, 21(3): 259-264. |
[4] | 马艳艳 李正军 张松平 陈卫 任瑛. HBc-VLP的分子动力学模拟和结合自由能计算[J]. 过程工程学报, 2021, 21(2): 219-229. |
[5] | 陈建军 张军伟 宋乾宁. 离子交换分离L-缬氨酸的传质动力学及动态穿透特征[J]. 过程工程学报, 2021, 21(1): 46-56. |
[6] | 夏紫薇 郑刘根 周春财 魏祥平 董祥林. 安徽临涣矿区烟煤与生活污泥共燃的燃烧特性与动力学特征[J]. 过程工程学报, 2021, 21(1): 108-115. |
[7] | 王丽丽 张玉柱 龙跃 王子兵 客海滨. 气淬粒化高炉熔渣液膜流动特性数值模拟[J]. 过程工程学报, 2020, 20(8): 887-895. |
[8] | 刘亚迪 Niklas Hedin 赵国英 贾利娜 聂毅. 低场MRI原位研究离子液体合成及相态变化[J]. 过程工程学报, 2020, 20(7): 807-821. |
[9] | 吴浩 邹冲 何江永 王凯 刘占伟 师帅. 低阶煤热解条件对高炉喷吹半焦燃烧性能及动力学特性的影响[J]. 过程工程学报, 2020, 20(4): 449-457. |
[10] | 李希铭 牛胜利 曲同鑫 韩奎华 路春美 王永征. 基于颗粒动力学理论的搅拌器中固液流动的数值模拟[J]. 过程工程学报, 2020, 20(3): 265-275. |
[11] | 叶聪 邢献军 张学飞 陈涛 张佳佳. 城市污泥与稻壳水热炭混合燃烧特性与动力学[J]. 过程工程学报, 2020, 20(3): 362-370. |
[12] | 龚傲 吴选高 喻小强 王定纯 徐志峰 田磊. 选择性还原氨浸从高硅低品位铜钴矿中提取铜、钴 的工艺及其浸出动力学[J]. 过程工程学报, 2020, 20(10): 1156-1165. |
[13] | 龙超 陈瑞 翟持 陈飞 杨春曦. 微芯片中磁性液滴的生成与操控综述[J]. 过程工程学报, 2020, 20(10): 1134-1146. |
[14] | 范一鸣 王景甫. 气淬高温熔渣颗粒运动和换热特性的数值分析[J]. 过程工程学报, 2019, 19(4): 685-692. |
[15] | 刘佳霖 任瑛 陈卫 杨晖 何秀娟 李应成. 油水界面上阴/阳离子型复配表面活性剂体系的分子动力学模拟[J]. 过程工程学报, 2019, 19(3): 533-543. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3057