邱天爽2,,,
朱广文3
1.大连交通大学计算机与通信工程学院 大连 116028
2.大连理工大学电子信息与电气工程学部 大连 116024
3.大连医科大学附属第一医院核医学科 大连 116011
基金项目:国家自然科学基金(61671105),辽宁省教育厅科学研究项目(JDL2020029)
详细信息
作者简介:宗静静:女,1981年生,博士,讲师,主要研究方向为医学图像处理
邱天爽:男,1954年生,博士,教授,博士生导师,主要研究方向为信号处理、医学图像处理
朱广文:男,1968年生,博士,主任医师,主要研究方向为PET/CT与SPECT/CT肿瘤显像、肿瘤分子核医学、放射性核素治疗
通讯作者:邱天爽 qiutsh@dlut.edu.cn
中图分类号:TN957.52;TP391.41计量
文章访问数:111
HTML全文浏览量:80
PDF下载量:17
被引次数:0
出版历程
收稿日期:2020-10-16
修回日期:2021-09-21
网络出版日期:2021-10-25
刊出日期:2021-12-21
A PET-CT Lung Tumor Segmentation Method Based on Active Contour Model
Jingjing ZONG1, 2,Tianshuang QIU2,,,
Guangwen ZHU3
1. School of Computer and Communication Engineering, Dalian Jiaotong University, Dalian 116028, China
2. Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
3. Department of Nuclear Medicine, First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
Funds:The National Natural Science Foundation of China (61671105), The Scientific Research Project of Department of Education, Liaoning Province (JDL2020029)
摘要
摘要:针对PET-CT肺肿瘤分割中存在的没有充分将医生临床经验融入到算法设计的问题,该文利用PET高斯分布先验,结合区域可伸缩拟合(RSF)模型和最大似然比分类(MLC)准则,提出一种基于变分水平集的混合活动轮廓模型RSF_ML。进一步,借鉴人工勾画肺肿瘤过程中融合图像的重要价值,提出了基于RSF_ML的PET-CT肺肿瘤融合图像分割方法。实验表明,所提出方法较好地实现了有代表性的非小细胞肺肿瘤(Non-Small Cell Lung Cancer, NSCLC)的精确分割,主客观结果优于对比方法,可为临床提供有效的计算机辅助分割结果。
关键词:活动轮廓模型/
肺肿瘤分割/
变分水平集/
最大似然比分类
Abstract:To solve the problem that the doctors' clinical experience is not fully integrated into the algorithm design in PET-CT lung tumor segmentation, a hybrid active contour model named RSF_ML based on variational level set is proposed by combining with the PET Gaussian distribution prior, Region Scalable Fitting (RSF) model and Maximum Likelihood ratio Classification (MLC) criterion. Furthermore, referring to the important value of fusion image in the process of lung tumor manual delineation, a segmentation method for PET-CT lung tumor fusion image based on RSF_ML is proposed. Experiments show that the proposed method can achieve accurate segmentation of representative Non-Small Cell Lung Cancer (NSCLC), and the subjective and objective results are better than the comparison method, which can provide effective computer-aided segmentation results for clinic.
Key words:Active contour model/
Lung tumor segmentation/
Variational level set/
Maximum Likelihood ratio Classification (MLC)
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=ca835507-02fe-4726-9baf-9706d42e39a0