删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于代价敏感的序贯三支决策最优粒度选择方法

本站小编 Free考研考试/2022-01-03

张清华,,
庞国弘,
李新太,
张雪秋
重庆邮电大学计算智能重庆市重点实验室 重庆 400065
基金项目:国家重点研发计划(2020YFC2003502),国家自然科学基金(61876201)

详细信息
作者简介:张清华:男,1974年生,教授,博士,博士生导师,研究方向为不确定信息处理、粗糙集与粒计算等
庞国弘:男,1994年生,硕士生,研究方向为不确定信息处理、粗糙集与三支决策
李新太:男,1995年生,硕士生,研究方向为不确定信息处理、数据挖掘与机器学习
张雪秋:女,1993年生,硕士生,研究方向为不确定信息处理、粗糙集与多尺度
通讯作者:张清华 zhangqh@cqupt.edu.cn
中图分类号:TP301.6

计量

文章访问数:235
HTML全文浏览量:89
PDF下载量:23
被引次数:0
出版历程

收稿日期:2020-09-21
修回日期:2021-07-19
网络出版日期:2021-08-18
刊出日期:2021-10-18

Optimal Granularity Selection Method Based on Cost-sensitive Sequential Three-way Decisions

Qinghua ZHANG,,
Guohong PANG,
Xintai LI,
Xueqiu ZHANG
Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Funds:The National Key Research and Development Program of China (2020YFC2003502), The National Natural Science Foundation of China (61876201)


摘要
摘要:最优粒度选择是序贯三支决策领域研究的热点之一,旨在通过合理的粒度选择来对复杂问题进行求解。在现阶段最优粒度选择中,代价敏感是影响决策的重要因素之一。针对这个问题,该文首先基于信息增益和卡方检验提出一种新的属性重要度计算方法;其次,为了更好地符合实际应用场景,在构建多粒度空间时将代价参数与粒度大小相结合,设置了相应的惩罚规则,并分析了决策阈值的变化规律;最后,为了消除测试代价和决策代价量纲不一致所带来的影响,借助变异系数设计了一种客观的代价计算方法。实验结果表明,该模型适用于现有代价认知场景,能在给定代价情况下选出代价最小的最优粒层。
关键词:序贯三支决策/
属性重要度/
惩罚函数/
变异系数/
最优粒度选择
Abstract:Optimal granularity selection is one of the hotspots in the research of sequential three-way decisions. It aims to solve complex problems through reasonable granularity selection. At present, in the field of optimal granularity selection, cost sensitivity is one of the important factors affecting decision making. To solve this problem, firstly, based on information gain and chi-squared test, a novel method to measure the attribute significance is proposed when constructing the multi-granularity space in this paper. Then, to better conform the practical application, the corresponding penalty rule is set by combining the cost parameters and the granularity, and the variation rule of the decision threshold is analyzed. Finally, to eliminate the influence of the dimensional difference between the test cost and the decision cost, an objective cost calculation method is given by the coefficient of variation. The experimental results show that the proposed algorithm can be used in existing cost cognition scene, and the optimal granular layer with the lowest cost can be obtained under the given cost scene.
Key words:Sequential three-way decisions/
Attribute significance/
Penalty function/
Coefficient of variation/
Optimal granularity selection



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=46b2c5d5-b9ee-4b14-a07a-181ea47810cc
相关话题/信息 计算 重庆邮电大学 空间 智能