删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于高斯平滑压缩感知分数阶全变分算法的图像重构

本站小编 Free考研考试/2022-01-03

覃亚丽,
梅济才,,
任宏亮,
胡映天,
常丽萍
浙江工业大学信息工程学院 杭州 310014
基金项目:国家自然科学基金 (61675184, 61275124);浙江省自然科学基金(LY18F010023)

详细信息
作者简介:覃亚丽:女,1963年生,教授,研究方向为光学信号处理
梅济才:男,1994年生,硕士生,研究方向为压缩感知信号处理
任宏亮:男,1978年生,副教授,研究方向为信号与信息处理
胡映天:女,1991年生,讲师,研究方向为光纤传感
常丽萍:女,1980年生,副教授,研究方向为压缩感知信号处理
通讯作者:梅济才 2111703012@zjut.edu.cn
中图分类号:TN911.73; TP391.41

计量

文章访问数:654
HTML全文浏览量:217
PDF下载量:70
被引次数:0
出版历程

收稿日期:2020-05-12
修回日期:2020-11-06
网络出版日期:2020-11-11
刊出日期:2021-07-10

Image Reconstruction Based on Gaussian Smooth Compressed Sensing Fractional Order Total Variation Algorithm

Yali QIN,
Jicai MEI,,
Hongliang REN,
Yingtian HU,
Liping CHANG
College of Information Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Funds:The National Natural Science Foundation of China (61675184, 61275124), The Natural Science Foundation of Zhejiang Province (LY18F010023)


摘要
摘要:针对全变分(TV)算法梯度效应造成图像纹理细节丢失和单像素成像系统中的环境噪声问题,该文给出基于高斯平滑压缩感知分数阶全变分(FOTVGS)算法的图像重构。分数阶微分损失图像低频分量的同时增加了图像的高频分量,达到增强图像细节的目的,高斯平滑滤波算子更新拉格朗日梯度算子滤除了微分算子导致的加性高斯白噪声高频分量的增加。仿真结果表明,对比其他4种同类算法,在相同的采样率和噪声水平下,该算法能取得最大的峰值信噪比(PSNR)和结构相似度(SSIM)。采样率为0.2时,对比分数阶全变分(FOTV)算法,在无噪声(测量值${\rm{SNR}} = \infty $)和有噪声(测量值${\rm{SNR}} = 25\;{\rm{dB}}$)情况下提高的最大峰值信噪比和结构相似度分别是1.39 dB(0.035)和3.91 dB(0.098)。可见,此算法在无噪声和有噪声情况下均能提高图像的重构质量,尤其是在有噪声情况下对图像重构质量有较大提高。该算法为单像素成像等计算成像系统中由于环境造成的噪声的图像重构提供了可行的解决方案。
关键词:图像重构/
压缩感知/
全变分/
分数阶微分/
高斯平滑
Abstract:In view of the gradient effect caused by the gradient effect of the Total Variation (TV) algorithm and the environmental noise in the single pixel imaging system, an image reconstruction based on the Gaussian Smooth compressed sensing Fractional Order Total Variation algorithm (FOTVGS) is proposed. Fractional differential loss of low-frequency components of the image increases the high-frequency components of the image to achieve the purpose of enhancing image details. The Gaussian smoothing filter operator updates the Lagrangian gradient operator to filter out the additive white Gaussian noise caused by the differential operator. Simulation results show that, compared with other four similar algorithms, the algorithm can achieve the maximum Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity(SSIM) at the same sampling rate and noise level. When the sampling rate is 0.2, compared with the Fractional Order Total Variation (FOTV) algorithm, the maximum PSNR and SSIM increase by 1.39 dB (0.035) and 3.91 dB (0.098) respectively. It can be proved that this algorithm can improve the reconstruction quality of the image in the absence of noise and noise, especially in the case of noise, the quality of image reconstruction is greatly improved. The proposed algorithm provides a feasible solution for image reconstruction of noise caused by environment in single-pixel imaging and other computing imaging system.
Key words:Image reconstruction/
Compressive sensing/
Fractional differential/
Total variation/
Gaussian smooth



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=66f3c3b3-b64b-4b58-a17b-4c187dbcfa66
相关话题/图像 分数 环境 系统 质量