张章1,,,
虞志益2,
解光军1
1.合肥工业大学电子科学与应用物理学院 合肥 230601
2.中山大学微电子科学与技术学院 珠海 519082
基金项目:国家自然科学基金(U19A2053, 61674049),中央高校基本科研基金(JZ2020YYPY0089),中国科学院红外成像材料与器件重点实室开放课题(IIMDKFJJ-19-04)
详细信息
作者简介:曾剑敏:男,1991年生,博士生,研究方向为存算一体架构设计
张章:男,1982年生,教授,主要研究方向为集成电路设计及基于混合器件的AI神经形态芯片设计
虞志益:男,1977年生,教授,研究方向为处理器架构设计、基于非易失器件、面向人工智能深度学习等应用的电路与系统设计
解光军:男,1970年生,教授,主要研究方向为集成电路及新型器件电路设计
通讯作者:张章 zhangzhang@hfut.edu.cn
中图分类号:TN47计量
文章访问数:334
HTML全文浏览量:249
PDF下载量:76
被引次数:0
出版历程
收稿日期:2021-01-05
修回日期:2021-04-09
网络出版日期:2021-04-30
刊出日期:2021-06-18
Applications of Generic In-memory Computing Architecture Platform Based on SRAM to Internet of Things
Jianmin ZENG1,Zhang ZHANG1,,,
Zhiyi YU2,
Guangjun XIE1
1. School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230601, China
2. School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai 519082, China
Funds:The National Natural Science Foundation of China(U19A2053, 61674049), The Fundamental Research Funds for Central Universities (JZ2020YYPY0089), The Key Laboratory of CAS (IIMDKFJJ-19-04)
摘要
摘要:最近,存算一体(IMC)架构引起了广泛关注,并被认为有望成为突破冯诺依曼瓶颈的新型计算机架构,特别是在数据密集型(data-intensive)计算中能够带来显著的性能和功耗优势。其中,基于SRAM的IMC架构方案也被大量研究与应用。该文在一款基于SRAM的通用存算一体架构平台——DM-IMCA的基础上,探索IMC架构在物联网领域中的应用价值。具体来说,该文选取了物联网中包括信息安全、二值神经网络和图像处理在内的多个轻量级数据密集型应用,对算法进行分析或拆分,并将关键算法映射到DM-IMCA中的SRAM中,以达到加速应用计算的目的。实验结果显示,与基于传统冯诺依曼架构的基准系统相比,利用DM-IMCA来实现物联网中的轻量级计算密集型应用,可获得高达24倍的计算加速比。
关键词:物联网/
超越冯诺依曼架构/
存算一体/
计算型SRAM
Abstract:In-Memory Computing (IMC) architectures have aroused much attention recently, and are regarded as promising candidates to break the von Neumann bottleneck. IMC architectures can bring significant performance and energy-efficiency improvement especially in data-intensive computation. Among those emerging IMC architectures, SRAM-based ones have also been extensively researched and applied to many scenarios. In this paper, IoT applications are explored based on a SRAM-based generic IMC architecture platform named DM-IMCA. To be specific, the algorithms of several lightweight data-intensive applications in IoT area including information security, Binary Neural Networks (BNN) and image processing are analyzed, decomposed and then mapped to SRAM macros of DM-IMCA, so as to accelerate the computation of these applications. Experimental results indicate that DM-IMCA can offer up to 24 times performance speed-up, compared to a baseline system with conventional von Neumann architecture, in terms of realizing lightweight data-intensive applications in IoT.
Key words:Internet of Things (IoT)/
Beyond von Neumann architecture/
In-Memory Computing (IMC)/
Computational SRAM
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=1c82604e-0cad-4b5c-aa7d-9a3ead5b403e