删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于最小位移可视差的连续Seam Carving算法在图像缩放中的研究

本站小编 Free考研考试/2022-01-03

闁跨喐鏋婚幏鐑解偓姘舵晸閺傘倖瀚圭粩姗礗P闁跨喐鏋婚幏铚傜闁跨喐鏋婚幏鐑芥晸鐞涙灏呴幏鐑芥晸閺傘倖瀚规稉鎾茬瑹闁跨喐鏋婚幏鐑芥晸閺傘倖瀚规0鎴︽晸閺傘倖瀚归幉褑鎻幏鐑芥晸閻偄灏呴幏鐑芥晸閺傘倖瀚归柨鐔告灮閹风兘鏁撻幓顓濈串閹风兘鏁撶憴鎺濆櫙閹风兘鏁撻弬銈嗗闁跨喐鏋婚幏閿嬫炊闁跨喐鏋婚幏閿嬪€撮敓锟�
547闁跨喐鏋婚幏鐑芥珜閺嶏繝鏁撻弬銈嗗闁跨喎褰ㄩ崠鈩冨闁跨喐鏋婚幏锟�1130闁跨喐鏋婚幏閿嬪瘹闁跨喐鏋婚幏鐑芥晸閺佹瑦娼楃喊澶嬪閸楀啴鏁撻弬銈嗗闁跨喐鏋婚幏鐑芥晸閺傘倖瀚归柨鐔告灮閹风兘鏁撻弬銈嗗閻欐椿婢侀幏鐑芥晸閻欙紕顣幏鐑芥晸閺傘倖瀚归柨鐔告灮閹风兘鏁撻幒銉緛閹风兘鎽¢~顔藉闁跨喐鏋婚幏鐤檶闁跨喕顢滈妵顭戝灲閹风兘鏁撻弬銈嗗闁跨喐鏋婚幏宄板櫚闁跨喐鏋婚幏鐑芥晸閺傘倖瀚归柨鐔告灮閹风兘鏁撻弬銈嗗闁跨喐鏋婚幏鐑芥晸閺傘倖瀚归柨鐔告灮閹风兘鏁撶紒鎾扁偓渚€鏁撻悪鈥茬窗閵嗕線鏁撻弬銈嗗闁跨喐鏋婚幏鐑芥晸閺傘倖瀚归柨鐔告灮閹风兘鏁撻弬銈嗗闁跨喐鏋婚幏鐑芥晸娓氥儮妲勯幏鐑芥晸閺傘倖瀚归柨鐔告灮閹风兘鏁撻弬銈嗗闁跨喐鏋婚幏鐑芥晸閼存俺鎻幏鐑芥晸閺傘倖瀚归柨鐔告灮閹风兘鏁撻弬銈嗗鐎涳箓鏁撻弬銈嗗閸栬顒熼柨鐔告灮閹风兘鏁撻弬銈嗗闁跨喐鏋婚幏鐑芥晸閺傘倖瀚归柨鐔告灮閹风兘鏁撶紒鐐插殩閹风兘鏁撻弬銈嗗闁跨喐鏋婚幏鐑芥晸閺傘倖瀚归柨鐔告灮閹风兘鏁撻弬銈嗗瀹稿秹鏁撻弬銈嗗闁跨喓鐛よ閹风兘鏁撻弬銈嗗闁跨喐鏋婚幏鐑芥晸閺傘倖瀚归柨鐔告灮閹凤拷28闁跨喐鏋婚幏宄邦劅闁跨喓瀚涢敐蹇斿
崔嘉1, 2,
宋磊1, 2,
陆宏菊3,
唐明晰4,
戚萌1, 2,,
1.山东师范大学信息科学与工程学院 济南 250358
2.山东师范大学智能信息计算与安全实验室 济南 250358
3.济南技师学院 济南 250031
4.香港理工大学设计学院 香港 999077
基金项目:国家自然科学基金(61902225, 61502285),山东省青年基金(ZR2014FQ013)

详细信息
作者简介:崔嘉:男,1982年生,副教授,研究方向为图像处理、计算机辅助设计、智能设计
宋磊:男,1993年生,硕士生,研究方向为图像处理
陆宏菊:女,1982年生,讲师,研究方向为图像处理、语义分析
唐明晰:男,1956年生,教授,研究方向为智能设计、设计推理、计算机图形学
戚萌:女,1983年生,讲师,研究方向为虚拟现实、计算机图形学
通讯作者:戚萌 qimeng@sdnu.edu.cn
中图分类号:TP391.41

计量

文章访问数:292
HTML全文浏览量:156
PDF下载量:26
被引次数:0
出版历程

收稿日期:2019-12-30
修回日期:2020-10-23
网络出版日期:2020-12-11
刊出日期:2021-04-20

Continuous Seam Carving Algorithm Based on Just Noticeable Distortion Algorithm in Image Retargeting

Jia CUI1, 2,
Lei SONG1, 2,
Hongju LU3,
Mingxi TANG4,
Meng QI1, 2,,
1. School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China
2. Key Laboratory of Intelligent Information Processing, Shandong Normal University, Jinan 250358, China
3. College of Jinan Institute of Technology, Jinan 250031, China
4. School of Design, The Hong Kong Polytechnic University, Hong Kong 999077, China
Funds:The National Natural Science Foundation of China (61902225, 61502285), The Natural Science Foundation of Shandong Province (ZR2014FQ013)


摘要
摘要:图像缩放技术要求对图像缩放的同时保证重要信息不丢失且物体边缘不发生扭曲。近年来,Seam Carving及其改进算法得到了广泛的关注和研究。由于采用了离散式最小能量线迭代搜索策略,缩放信息无法在迭代过程中传递导致扭曲现象普遍存在。该文针对上述问题提出最小位移可视差(JND)检测算法,能够有效地检测每一次迭代中出现的潜在扭曲信息。能量权重$ {E}_{w} $能够将JND信息累加传递给后续的迭代过程,从而抑制缩放过程中的边缘扭曲现象。通过JND算法和能量权重,该文首次将离散的Seam Carving模型转变为连续缩放模型。最后,在公共数据集RetargetMe上与最新的图像缩放算法进行多组对比实验,验证了所提方法的有效性和先进性。
关键词:图像缩放/
Seam Carving/
最小位移可视差/
平均场近似
Abstract:Image retargeting technologies require important information preservation and less edge distortion during increasing/decreasing image size. The seam carving based algorithms, as the classic retargeting model, receive widespread attention in recent years. However, because of the discrete least energy seam searching strategy, the retargeting information can not be passed generation by generation, which causes retargeting distortions to prevail. To solve this problem, the Just Noticeable Distortion (JND) algorithm is proposed to detect the potential distribution of distortion information. Through the proposed energy weight Ew, the JND information can be passed to the following retargeting iteration for distortion reduction. According to the best knowledge, it is the first time to propose the seam carving algorithm in continuous way by the JND algorithm and energy weight, are the promising results also demonstrated compared with several new approaches at public database ‘Retarget Me’, qualitatively and quantitatively.
Key words:Image Retargeting/
Seam Carving/
Just Noticeable Distortion (JND)/
Mean Approximation



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=8446c219-60d6-46d2-bac0-8b53561a2070
相关话题/图像 信息 智能 设计 山东师范大学

闁跨喕顢滄导娆愬闁跨喐鏋婚幏鐑芥晸閺傘倖瀚归柨鐔告灮閹风兘鏁撻梼棰濇緛閹风兘鏁撻弬銈嗗閸涳拷闁跨喐鏋婚幏鐑芥晸閺傘倖瀚归柨鐔告灮閹风兘鏁撻弬銈嗗閸欐牠鏁撻弬銈嗗缁旀瑩鏁撻弬銈嗗闁跨喕绶濋弬銈嗗閸樺鏁撻弬銈嗗闁跨喐鏋婚幏鐑芥晸鐠囶偓绱�