删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于Sentinel-1/2遥感数据的冬小麦覆盖地表土壤水分协同反演

本站小编 Free考研考试/2022-01-03

赵建辉,
张蓓,
李宁,
郭拯危,
1.河南大学河南省大数据分析与处理重点实验室 开封 475004
2.河南大学河南省智能技术与应用工程技术研究中心 开封 475004
3.河南大学计算机与信息工程学院 开封 475004
基金项目:国家自然科学基金(61871175),河南省科技攻关计划项目(182102210233, 192102210082),河南省青年人才托举工程(2019HYTP006),河南省高等学校重点科研项目(19A420005)

详细信息
作者简介:赵建辉:男,1980年生,副教授,研究方向为SAR图像处理
张蓓:女,1994年生,硕士生,研究方向为SAR图像处理
李宁:男,1987年生,教授,研究方向为多模式合成孔径雷达成像及其应用研究
郭拯危:女,1963年生,教授,研究方向为SAR图像处理
通讯作者:郭拯危 gzw@henu.edu.cn
中图分类号:TN958

计量

文章访问数:541
HTML全文浏览量:227
PDF下载量:94
被引次数:0
出版历程

收稿日期:2020-05-29
修回日期:2020-12-06
网络出版日期:2020-12-18
刊出日期:2021-03-22

Cooperative Inversion of Winter Wheat Covered Surface Soil Moisture Based on Sentinel-1/2 Remote Sensing Data

Jianhui ZHAO,
Bei ZHANG,
Ning LI,
Zhengwei GUO,
1. Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, China
2. Henan Engineering Research Center of Intelligent Technology and Application, Henan University, Kaifeng 475004, China
3. College of Computer and Information Engineering, Henan University, Kaifeng 475004, China
Funds:The National Natural Science Foundation of China (61871175), The Plan of Science and Technology of Henan Province (182102210233, 192102210082), The Youth Talent Lifting Project of Henan Province (2019HYTP006), The College Key Research Project of Henan Province (19A420005)


摘要
摘要:冬小麦是我国重要粮食作物之一,对冬小麦覆盖地表土壤水分进行监测有助于解决因土壤供水导致的冬小麦歉收和农业用水浪费等问题。为了降低冬小麦覆盖地表土壤水分微波遥感反演过程中冬小麦对雷达后向散射系数的影响,该文基于Sentinel-1携带的合成孔径雷达(SAR)数据和Sentinel-2携带的多光谱成像仪(MSI)数据,结合水云模型,开展冬小麦覆盖地表土壤水分协同反演研究。首先,基于MSI数据,该文定义了一种新的植被指数,即融合植被指数(FVI),用于冬小麦含水量反演;然后,该文发展了一种基于主被动遥感数据的冬小麦覆盖地表土壤水分反演半经验模型,校正冬小麦在土壤水分反演过程中对雷达后向散射系数的影响;最后,以河南省某地冬小麦农田为研究区域,开展归一化水体指数(NDWI)和FVI两种指数与VV, VH, VV/VH 3种极化组合而成的6种反演方式下的土壤水分反演对比实验。结果表明:以FVI为植被指数,能够更好地去除冬小麦在土壤水分反演过程中对雷达后向散射系数的影响;6种反演方式中,FVI与VV/VH组合下的反演效果最优,其决定系数为0.7642,均方根误差为0.0209 cm3/cm3,平均绝对误差为0.0174 cm3/cm3,展示了该文所提土壤水分反演模型的研究价值和应用潜力。
关键词:雷达土壤水分反演/
水云模型/
融合植被指数/
Sentinel-1/2
Abstract:Winter wheat is one of the most important food crops in China. Monitoring the soil moisture over winter wheat covered surface can help to solve the problem of poor harvest of winter wheat and waste of agricultural water due to soil water supply. In order to reduce the influence of winter wheat on radar backscattering coefficient in the process of microwave remote sensing retrieval of soil moisture covered by winter wheat, based on the Synthetic Aperture Radar (SAR) data carried by Sentinel-1 and the MultiSpectral Imager (MSI) data carried by Sentinel-2, combined with the water cloud model, the collaborative inversion of soil moisture over winter wheat mulching surface is carried out. Firstly, based on the MSI data from Sentinel-2, a new vegetation index called Fusion Vegetation Index (FVI) is defined for inversion of winter wheat moisture. Secondly, a semi-empirical soil moisture inversion model based on active and passive remote sensing data is developed to correct the influence of winter wheat on radar backscatter coefficient. Finally, by taking a winter wheat field in Henan Province as the study area, the comparative experiments of soil moisture inversion are carried out under six combinations, which are composed of two vegetation indexes, Normalized Difference Water Index (NDWI) and FVI respectively, and three types of polarization data, VV, VH and VV/VH respectively. Through the experimental results, FVI shows a better performance than NDWI in reducing the influence of winter wheat on radar backscatter coefficient. Meanwhile, among the six inversion combinations, the one of FVI and VV/VH achieves the optimal inversion precision, with a determination coefficient of 0.7642, a Root Mean Square Error of 0.0209 cm3/cm3, and a Mean Absolute Error of 0.0174 cm3/cm3, demonstrating the application potential of the soil inversion model developed in this paper.
Key words:Radar soil moisture inversion/
Water cloud model/
Fusion Vegetation Index(FVI)/
Sentinel-1/2



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=e2adc34a-8870-49e7-a401-77ac2d964f1e
相关话题/土壤 数据 河南大学 遥感 过程