郭蔚然1,
刘宏炜1,
朱奇光1, 2,,
1.燕山大学信息科学与工程学院 秦皇岛 066004
2.河北省特种光纤与光纤传感重点实验室 秦皇岛 066004
基金项目:国家自然科学基金(61773333),河北省教育厅高等学校科技计划重点项目(ZD2018234)
详细信息
作者简介:陈卫东:男,1971年生,教授,研究方向为智能算法及应用
郭蔚然:男,1992年生,硕士生,研究方向为深度学习图像分割
刘宏炜:男,1995年生,硕士生,研究方向为深度学习图像分割
朱奇光:男,1978年生,副教授,研究方向为智能机器人检测与控制
通讯作者:朱奇光 zhu7880@ysu.edu.cn
中图分类号:TN911.73计量
文章访问数:573
HTML全文浏览量:261
PDF下载量:118
被引次数:0
出版历程
收稿日期:2019-08-08
修回日期:2020-08-26
网络出版日期:2020-09-03
刊出日期:2020-11-16
Research on Fuzzy Image Instance Segmentation Based on Improved Mask R-CNN
Weidong CHEN1, 2,Weiran GUO1,
Hongwei LIU1,
Qiguang ZHU1, 2,,
1. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
2. Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao 066004, China
Funds:The National Natural Science Foundation of China (61773333), The Key Project of Science and Technology Plan of Colleges and Universities of Hebei Provincial Department of Education (ZD2018234)
摘要
摘要:Mask R-CNN是现阶段实例分割相对成熟的方法,针对Mask R-CNN算法当中还存在的分割边界精度以及对于模糊图片鲁棒性较差等问题,该文提出一种基于改进的Mask R-CNN实例分割方法。该方法首先提出在Mask分支上使用卷积化条件随机场(ConvCRF)来优化Mask分支对于候选区域进一步分割,并使用FCN-ConvCRF分支来代替原有分支;之后提出新锚点大小和IOU标准,使得RPN候选框能够涵盖所有实例区域;最后使用一种添加部分经过转换网络转换的数据进行训练的方法。总的mAP值与原算法相比提升了3%,并且分割边界精确度和鲁棒性都有一定提高。
关键词:图像实例分割/
Mask R-CNN/
条件随机场/
RPN层
Abstract:Mask R-CNN is a relatively mature method for image instance segmentation at this stage. For the problems of segmentation boundary accuracy and poor robustness of fuzzy pictures in Mask R-CNN algorithm, an improved Mask R-CNN method for image instance segmentation is proposed. This method first proposes that on the Mask branch, Convolution Condition Random Field(ConvCRF) is used to optimize the Mask branch, and the candidate area is further segmented, and uses FCN-ConvCRF branch to replace the original branch. Then, a new anchor size and IOU standard are proposed to enable the RPN candidate box cover all the instance areas. Finally, a training method is used to add a part of data transformed by the transformation network. Compared with the original algorithm, the total mAP value is improved by 3%, and the accuracy and robustness of segmentation boundary are improved to some extent.
Key words:Image instance segmentation/
Mask R-CNN/
Conditional Random Field(CRF)/
RPN level
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=e49fedd8-5269-437c-8b13-f6cb4f736567