删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

面向图像识别的测地局部典型相关分析方法

本站小编 Free考研考试/2022-01-03

许欢1,
苏树智1,,,
颜文婧2,
邓瀛灏1,
谢军1
1.安徽理工大学计算机科学与工程学院 淮南 232001
2.北京工商大学计算机与信息工程学院 北京 100037
基金项目:国家自然科学基金(61806006),安徽省高等学校自然科学研究基金(KJ2018A0083),中国博士后科学基金(2019M660149)

详细信息
作者简介:许欢:女,1982年生,助教,研究方向为机器学习、图像处理、模式识别
苏树智:男,1987年生,副教授,研究方向为多模态模式识别、特征学习、子空间融合、图像处理
颜文婧:女,1984年生,讲师,研究方向为机器学习、模式识别、信号处理
通讯作者:苏树智 sushuzhi@foxmail.com
中图分类号:TN911.73; TP391.4

计量

文章访问数:653
HTML全文浏览量:195
PDF下载量:48
被引次数:0
出版历程

收稿日期:2020-02-21
修回日期:2020-07-23
网络出版日期:2020-07-23
刊出日期:2020-11-16

A Geodesic Locality Canonical Correlation Analysis Method for Image Recognition

Huan XU1,
Shuzhi SU1,,,
Wenjing YAN2,
Yinghao DENG1,
Jun XIE1
1. College of Computer Science and Engineering, Anhui University of Science & Technology, Huainan 232001, China
2. School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100037, China
Funds:The National Natural Science Foundation of China (61806006), The Anhui Province Natural Science Research Foundation of Institutions of Higher Learning (KJ2018A0083), The China Postdoctoral Science Foundation (2019M660149)


摘要
摘要:典型相关分析(CCA)是一种经典的多模态特征学习方法,能够从不同模态同时学习相关性最大的低维特征,然而难以发现隐藏在样本空间中的非线性流形结构。该文提出一种基于测地流形的多模态特征学习方法,即测地局部典型相关分析(GeoLCCA)。该方法利用测地距离构建了低维相关特征的测地散布,并进一步通过最大化模态间的相关性和最小化模态内的测地散布学习更具鉴别力的非线性相关特征。该文不仅在理论上对提出的方法进行了分析,而且在真实的图像数据集上验证了方法的有效性。
关键词:图像识别/
典型相关分析/
多模态特征学习/
流形学习
Abstract:Canonical Correlation Analysis (CCA) is a classic multi-modal feature learning method, which can learn low-dimensional features with the maximum correlation from different modalities. However, it is difficult for CCA to find the nonlinear manifold structures hidden in the sample spaces. This paper proposes a multi-modal feature learning method based on geodesic manifolds, namely Geodesic Locality Canonical Correlation Analysis (GeoLCCA).The geodesic distances are used to construct the geodesic scatters of low-dimensional correlation features, and the nonlinear correlation features with better discriminative power are learned by maximizing the between-modal correlation and minimizing the within-modal geodesic scatters. This paper not only analyzes the proposed method in theory, but also verifies the effective of the proposed method on the real-world image datasets.
Key words:Image recognition/
Canonical Correlation Analysis (CCA)/
Multi-modal feature learning/
Manifold learning



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=b3aa3219-253c-4fbc-85bb-ca9a4fd356a0
相关话题/图像 空间 博士后 网络 北京