张伟涛,,
楼顺天
西安电子科技大学电子工程学院 西安 710071
基金项目:国家自然科学基金(61571339),陕西省创新人才推进计划-青年科技新星项目(2018KJXX-019)
详细信息
作者简介:孙瑾铃:女,1995年生,博士生,研究方向为盲信号处理
张伟涛:男,1983年生,副教授,硕士生导师,研究方向为盲信号处理
楼顺天:男,1962年生,教授,博士生导师,研究方向为神经网络信息处理与应用、模糊信息处理与应用、盲信号处理、现代信号智能处理、智能控制技术
通讯作者:张伟涛 zhwt-work@foxmail.com
中图分类号:TN911.7计量
文章访问数:1394
HTML全文浏览量:288
PDF下载量:31
被引次数:0
出版历程
收稿日期:2019-09-17
修回日期:2020-04-29
网络出版日期:2020-05-13
刊出日期:2020-10-13
Adaptive Blind Extraction of Rolling Bearing Fault Signal Based on Equivariant Adaptive Separation via Independence
Jinling SUN,Weitao ZHANG,,
Shuntian LOU
School of Electronic Engineering, Xidian University, Xi’an 710071, China
Funds:The National Natural Science Foundation of China (61571339), The Innovative Talents Promotion Program of Shaanxi Province (2018KJXX-019)
摘要
摘要:针对复杂工况下滚动轴承故障信号盲提取问题,该文提出一种独立分量分析(ICA)中非线性函数自适应选择方法,解决了等变化自适应源分离算法(EASI)在多类振动源共存的情况下无法分离轴承故障信号的问题。此外,为了解决在线盲分离算法稳态误差与收敛速率的平衡问题,提出基于模糊逻辑的自适应迭代步长选择方法,极大地提高了学习算法的收敛速度,且稳态误差更小。轴承故障数据的盲提取仿真结果验证了算法的性能。
关键词:盲信号分离/
故障检测/
超高斯/
亚高斯/
模糊逻辑
Abstract:For the problem of blind extraction of rolling bearing fault signals under complex working conditions, an adaptive selection method of non-linear functions in Independent Component Analysis (ICA) is proposed, which solves the problem that Equivariant Adaptive Separation via Independence(EASI) can not separate bearing fault signals when multiple vibration sources coexist. In addition, in order to balance the steady-state error and convergence rate of the online blind separation algorithm, an adaptive iterative step selection method based on fuzzy logic is proposed, which improves greatly the convergence speed of the learning algorithm and reduces the steady-state error. The simulation results of blind extraction of bearing fault data verify the performance of the proposed algorithm.
Key words:Blind signal separation/
Fault detection/
Super-Gaussian/
Sub-Gaussian/
Fuzzy logic
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=114bfc98-cf45-4282-8d26-84b395fa6fda