冯永强1, 2,
郭瑞杰3,
朱万华1,,,
方广有1
1.中国科学院电磁辐射与探测技术重点实验室 北京 100190
2.中国科学院大学 北京 100049
3.北京自动化控制设备研究所 北京 100074
基金项目:国家自然科学基金青年基金(41704177)和国家重点研发计划“深地资源勘查开采”重点专项(2018YFC0603201)
详细信息
作者简介:陈路昭:男,1992年生,博士,研究方向为传感器阵列的磁信号处理方法、运动平台磁干扰补偿技术
冯永强:男,1985年生,博士生,研究方向为航磁系统硬件设计与航磁数据处理方法
郭瑞杰:女,1992年生,硕士,研究方向为组合导航与系统控制技术
朱万华:男,1982年生,副研究员,主要研究方向为高灵敏度磁场传感器关键技术、高性能磁屏蔽关键技术
方广有:男,1963年生,研究员,主要研究方向为超宽带电磁场理论及工程应用、超宽带雷达成像技术、微波成像新方法和新技术
通讯作者:朱万华 whzhu@mail.ie.ac.cn
中图分类号:O411.5; TN911.73计量
文章访问数:2232
HTML全文浏览量:643
PDF下载量:66
被引次数:0
出版历程
收稿日期:2019-04-10
修回日期:2019-12-01
网络出版日期:2019-12-09
刊出日期:2020-03-19
Magnetic Dipole Object Tracking Algorithm Based on Magnetometer Array in Geomagnetic Background
Luzhao CHEN1, 2, 3,Yongqiang FENG1, 2,
Ruijie GUO3,
Wanhua ZHU1,,,
Guangyou FANG1
1. Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Beijing Automation Control Equipment Institute, Beijing 100074, China
Funds:The Youth Program of National Natural Science Foundation of China (41704177), The National Key R&D Program of China (2018YFC0603201)
摘要
摘要:针对地磁背景下磁偶极子目标跟踪过程中存在的地磁干扰与模型非线性的问题,该文提出一种基于差量磁异常的蒙特卡洛卡尔曼滤波(MCKF)跟踪方法。新的跟踪方法以传感器阵列测量磁场的差量作为观测信号,并利用蒙特卡洛卡尔曼滤波算法解决模型的非线性问题,实现磁偶极子目标的实时跟踪。通过仿真跟踪实验,结果表明该文算法较传统的扩展或无迹卡尔曼滤波算法在稳定跟踪过程中对目标特征参数的估计更精确;通过地磁背景跟踪实验,结果验证了该文算法较传统算法在低信噪比下的性能优势。
关键词:磁偶极子/
蒙特卡洛卡尔曼滤波/
传感器阵列/
地磁背景
Abstract:In order to solve the problem of geomagnetic interference and model nonlinearity in the tracking process of magnetic dipole under geomagnetic background, Monte Carlo Kalman Filter (MCKF) tracking method based on differential magnetic anomaly is proposed in this paper. The new tracking method takes the difference of magnetic field measured by sensor array as the observation signal, and uses Monte Carlo Kalman Filtering (MCKF) algorithm to solve the nonlinear problem of the model to realize the real-time tracking of magnetic dipole targets. The simulation results show that the proposed method is more accurate than the traditional Extended Kalman Filter (EKF) or Untracked Kalman Filter (UKF) in the stable tracking process. The results of real geomagnetic background tracking experiments show that the proposed algorithm has better tracking performance under low SNR.
Key words:Magnetic dipole/
Monte Carlo Kalman Filter (MCKF)/
Sensor array/
Geomagnetic background
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=8c3cc802-c6fc-46c0-8388-52fc5ff0c4b6