删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

超密集组网下一种基于干扰增量降低的分簇算法

本站小编 Free考研考试/2022-01-03

梁彦霞1,,,
姜静1,
孙长印1,
刘欣2,
谢永斌1
1.西安邮电大学 陕西省信息通信网络及安全重点实验室 ??西安 ??710121
2.西安欧亚学院信息工程学院 ??西安 ??710065
基金项目:国家自然科学基金(6187012068, 61501371),陕西省创新团队项目(2017KCT-30-02),陕西省科技厅国际科技合作与交流项目(2017KW-011)

详细信息
作者简介:梁彦霞:女,1981年生,博士,副教授,研究方向为超密集无线网络,多点协作传输,无线资源管理
姜静:女,1974年生,博士,教授,研究方向为无线通信,大规模MIMO
孙长印:男,1963年生,博士,副研究员,研究方向为超密集网络,无线资源管理,无线干扰管理
刘欣:男,1977年生,硕士,工程师,研究方向为移动通信,量子通信
谢永斌:男,1965年生,博士,教授,研究方向为无线网络架构,无线标准
通讯作者:梁彦霞 530332718@qq.com
中图分类号:TN929.53

计量

文章访问数:2114
HTML全文浏览量:1086
PDF下载量:41
被引次数:0
出版历程

收稿日期:2018-12-12
修回日期:2019-04-23
网络出版日期:2019-04-28
刊出日期:2020-02-19

A Cluster Algorithm Based on Interference Increment Reduction in Ultra-Dense Network

Yanxia LIANG1,,,
Jing JIANG1,
Changyin SUN1,
Xin LIU2,
Yongbin XIE1
1. Shaanxi Key Laboratory of Information Communication Network and Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
2. School of Information Engineering, Xi’an Eurasia University, Xi’an 710065, China
Funds:The National Natural Science Foundation of China (6187012068, 61501371), The Innovation Team Project of Shaanxi Province (2017KCT-30-02), The Shaanxi Science and Technology Department International Cooperation and Exchanges Project (2017KW-011)


摘要
摘要:超密集网络(UDNs)拉近了终端与节点间的距离,使得网络频谱效率大幅度提高,扩展了系统容量,但是小区边缘用户的性能严重下降。合理规划的虚拟小区(VC)只能降低中等规模UDNs的干扰,而重叠基站下的用户的干扰需要协作用户簇的方法来解决。该文提出了一种干扰增量降低(IIR)的用户分簇算法,通过在簇间不断交换带来最大干扰的用户,最小化簇内的干扰和,最终最大化系统和速率。该算法在不提高K均值算法的复杂度的同时,不需要指定簇首,避免陷入局部最优。仿真结果表明,网络密集部署时,有效提高系统和速率,尤其是边缘用户的吞吐量。
关键词:超密集网络/
虚拟小区(VC)/
分簇/
和速率/
小区边缘用户
Abstract:Ultra-Dense Networks (UDNs) shorten the distance between terminals and nodes, which improve greatly the spectral efficiency and expand the system capacity. But the performance of cell edge users is seriously degraded. Reasonable planning of Virtual Cell (VC) can only reduce the interference of moderate scale UDNs, while the interference of users under overlapped base stations in a virtual cell needs to be solved by cooperative user clusters. A user clustering algorithm with Interference Increment Reduction (IIR) is proposed, which minimizes the sum of intra-cluster interference and ultimately maximizes system sum rate by continuously switching users with maximum interference between clusters. Compared with K-means algorithm, this algorithm, no need of specifying cluster heads, avoids local optimum without increasement of the computation complexity. The simulation results show that the system sum rate, especially the throughput of edge users, can be effectively improved when the network is densely deployed.
Key words:Ultra-Dense Network (UDN)/
Virtual Cell (VC)/
Cluster/
Sum rate/
Cell-edge users



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=a039a71b-c8e2-4e5a-9e24-41c2c7a0b302
相关话题/网络 干扰 博士 系统 西安邮电大学