李天琪,,
张进,
唐波
国防科技大学电子对抗学院 合肥 230037
基金项目:国家自然科学基金(61671453),安徽省自然科学基金(1608085MF123),国防科技大学自然科学基金(ZK18-03-19)
详细信息
作者简介:张玉:男,1962年生,教授,硕士生导师,研究方向为雷达与通信中的信号处理
李天琪:女,1994年生,硕士生,研究方向为信号与信息处理
张进:男,1974年生,讲师,研究方向为阵列信号处理
唐波:男,1985年生,副教授,研究方向为自适应阵列信号处理、雷达波形设计等
通讯作者:李天琪 helen_0370@163.com
中图分类号:TN958.96计量
文章访问数:1422
HTML全文浏览量:763
PDF下载量:45
被引次数:0
出版历程
收稿日期:2019-01-28
修回日期:2019-03-20
网络出版日期:2019-09-27
刊出日期:2020-02-19
Individual Recognition Algorithm of IFF Radiation Sources Based on Ensemble Intrinsic Time-scale Decomposition
Yu ZHANG,Tianqi LI,,
Jin ZHANG,
Bo TANG
College of Electronic Countermeasures, National University of Defense Technology, Hefei 230037, China
Funds:The National Natural Science Foundation of China (61671453), The Natural Science Foundation of Anhui Province (1608085MF123), The Natural Science Foundation of National University of Defense Technology (ZK18-03-19)
摘要
摘要:为研究敌我识别(IFF)辐射源信号的细微特征,针对目前在复杂噪声环境中IFF辐射源个体识别研究不足的问题,该文提出一种基于集成固有时间尺度分解的IFF辐射源个体识别算法。该算法应用集成固有时间尺度分解(EITD)将采样信号自适应划分为若干有实际意义的信号分量并求取IFF辐射源信号在时频域的能量分布图。通过对时频能量谱的纹理分析,以图像的纹理特征表征辐射源信号的无意调制特征,送入支持向量机(SVM)中进行分类识别。实验表明,所提算法相较于基于希尔伯特-黄变换(HHT)、基于固有时间尺度分解(ITD)的辐射源个体识别方法在识别准确度上有较大提升。
关键词:图像处理/
敌我识别/
辐射源个体识别/
时频分析
Abstract:In order to study the subtle feature recognition of Identification Foe or Friend (IFF) radiation source signals, this paper proposes an IFF individual recognition method based on ensemble intrinsic time-scale decomposition to solve the problem of insufficient research on individual identification of IFF radiation source in complex noise environment. In this algorithm, the Ensemble Intrinsic Time-scale Decomposition (EITD) is applied to dividing the sampled signals into several practical signal components and obtaining the energy distribution diagram of the IFF radiation source signals in time-frequency domain. Through the texture analysis of time-frequency energy spectrum, the unintentional modulation feature of the radiation source signals is represented by the texture features of the image, which are sent to the Support Vector Machine (SVM) for classification and recognition. Experiments show that the proposed method is more accurate than the Hilbert-Huang Transform (HHT) and Inherent Time scale Decomposition (ITD) based method.
Key words:Image processing/
Identification Foe or Friend (IFF)/
Specific emitter identification/
Time-frequency analysis
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=ca450737-a3c5-4691-8441-0f74f98b1fbd