删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于Q-Learning算法的毫微微小区功率控制算法

本站小编 Free考研考试/2022-01-03

李云,
唐英,,
刘涵霄
重庆邮电大学移动通信技术重庆市重点实验室 ??重庆 ??400065
基金项目:国家自然科学基金(61671096),重庆市研究生科研创新项目(CYS17220),重庆市“科技创新领军人才支持计划”(CSTCCXLJRC201710),重庆市基础科学与前沿技术研究项目(cstc2017jcyjBX0005),重庆市留学人员创业创新支持计划

详细信息
作者简介:李云:男,1974年生,教授,博士生导师,主要研究领域为无线移动通信
唐英:女,1993年生,硕士生,研究方向为异构蜂窝无线网络
刘涵霄:男,1994年生,硕士生,研究方向为异构蜂窝无线网络
通讯作者:唐英 17749963914@163.com
中图分类号:TN92

计量

文章访问数:2270
HTML全文浏览量:943
PDF下载量:73
被引次数:0
出版历程

收稿日期:2018-12-28
修回日期:2019-04-10
网络出版日期:2019-05-21
刊出日期:2019-11-01

Power Control Algorithm Based on Q-Learning in Femtocell

Yun LI,
Ying TANG,,
Hanxiao LIU
Chongqing Key Laboratory of Mobile Communication Technology, The Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Funds:The National Natural Science Foundation of China (61671096), The Chongqing Research and Innovation Program of Graduated Students (CYS17220), The Chongqing Science and Technology Innovation Leadership Talent Support Program (CSTCCXLJRC201710), The Chongqing Research Program of Basic Science and Frontier Technology (cstc2017jcyjBX0005), The Chongqing Overseas Students Entrepreneurship and Innovation Support Plan


摘要
摘要:该文研究macro-femto异构蜂窝网络中移动用户的功率控制问题,首先建立了以最小接收信号信干噪比为约束条件,最大化毫微微小区的总能效为目标的优化模型;然后提出了基于Q-Learning算法的毫微微小区集中式功率控制(PCQL)算法,该算法基于强化学习,能在没有准确信道状态信息的情况下,实现对小区内所有用户终端的发射功率统一调整。仿真结果表明该算法能实现对用户终端的功率有效控制,提升系统能效。
关键词:集中式功率控制/
Q-Learning算法/
能效优化
Abstract:The power control problem of mobile users in macro-femto heterogeneous cellular networks is studied. Firstly, an optimization model that maximizes the total energy efficiency of femtocells with the minimum received signal-to-noise ratio as the constraint is established. Then, a femtocell centralized Power Control algorithm based on Q-Learning (PCQL) is proposed. Based on reinforcement learning, the algorithm can adjust the transmit power of the user terminal without accurate channel state information simultaneously. The simulation results show that the algorithm can effectively control the power of the user terminal and improve system energy efficient.
Key words:Centralized power control/
Q-Learning algorithm/
Energy-efficient optimization



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=26c8aacb-ed71-4be9-99db-1b75d34bd507
相关话题/控制 优化 创新 网络 博士生导师