删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于深度增强学习的软件定义网络路由优化机制

本站小编 Free考研考试/2022-01-03

兰巨龙,
于倡和,,
胡宇翔,
李子勇
国家数字交换系统工程技术研究中心 ??郑州 ??450002
基金项目:国家自然科学基金群体创新项目(61521003),国家自然科学基金(61502530)

详细信息
作者简介:兰巨龙:男,1962年生,教授,博士生导师,主要研究方向为新型网络体系结构与网络安全
于倡和:男,1993年生,硕士,研究方向为新型网络体系结构与网络安全
通讯作者:于倡和 yu_changhe@hotmail.com
中图分类号:TP393

计量

文章访问数:4360
HTML全文浏览量:1516
PDF下载量:171
被引次数:0
出版历程

收稿日期:2018-09-06
修回日期:2019-05-12
网络出版日期:2019-05-27
刊出日期:2019-11-01

A SDN Routing Optimization Mechanism Based on Deep Reinforcement Learning

Julong LAN,
Changhe YU,,
Yuxiang HU,
Ziyong LI
National Digital Switching System Engineering & Technological Research Center, Zhengzhou 450002, China
Funds:The National Natural Science Foundation of China for Innovative Research Groups (61521003), The National Natural Science Foundation of China (61502530)


摘要
摘要:为优化软件定义网络(SDN)的路由选路,该文将深度增强学习原理引入到软件定义网络的选路过程,提出一种基于深度增强学习的路由优化选路机制,用以削减网络运行时延、提高吞吐量等网络性能,实现连续时间上的黑盒优化,减少网络运维成本。此外,该文通过实验对所提出的路由优化机制进行评估,实验结果表明,路由优化机制具有良好的收敛性与有效性,较传统路由协议可提供更优的路由方案与实现更稳定的性能。
关键词:软件定义网络/
路由优化/
深度增强学习
Abstract:In order to achieve routing optimization in the Software Defined Network (SDN) environment, deep reinforcement learning is imposed to the SDN routing process and a mechanism based on deep reinforcement learning is proposed to optimize routing. This mechanism can improve network performance such as delay, throughput, and realize black-box optimization in continuous time, which surely reduces network operation and maintenance costs. Besides, the proposed routing optimization mechanism is evaluated through a series of experiments. The experimental results show that the proposed SDN routing optimization mechanism has good convergence and effectiveness, and can provide better routing configurations and performance stability than traditional routing protocols.
Key words:Software Defined Network (SDN)/
Routing optimization/
Deep reinforcement learning



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=2937abfe-f627-40a0-b05f-d135766eeffe
相关话题/网络 优化 软件 实验 数字