删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一种基于节点间资源承载度的链路预测方法

本站小编 Free考研考试/2022-01-03

王凯,
刘树新,,
陈鸿昶,
李星
国家数字交换系统工程技术研究中心 ??郑州 ??450002
基金项目:国家自然科学基金(61521003, 61803384)

详细信息
作者简介:王凯:男,1980年生,副研究员,博士生,研究方向为链路预测、社会网络分析
刘树新:男,1987年生,助理研究员,博士,研究方向为复杂网络演化、链路预测、通信网络安全
陈鸿昶:男,1964年生,教授,博士生导师,研究方向为电信网安全、社团发现
李星:男,1987年生,助理研究员,博士生,研究方向为社会网络分析
通讯作者:刘树新 liushuxin11@126.com; liushuxin11@gmail.com
中图分类号:N94; TP393

计量

文章访问数:665
HTML全文浏览量:339
PDF下载量:35
被引次数:0
出版历程

收稿日期:2018-06-05
修回日期:2019-01-16
网络出版日期:2019-01-30
刊出日期:2019-05-01

A New Link Prediction Method for Complex Networks Based on Resources Carrying Capacity Between Nodes

Kai WANG,
Shuxin LIU,,
Hongchang CHEN,
Xing LI
National Digital Switching System Engineering and Technological R&D Center, Zhengzhou 450002, China
Funds:The National Natural Science Foundation of China (61521003, 61803384)


摘要
摘要:链路预测旨在发现网络的未知、缺失连接,具有重要的实际应用价值。基于网络结构相似性的链路预测方法具有简单且有效的特点,受到各领域****的普遍关注。然而,许多现有方法在计算节点间存在连接可能性时,忽视了节点间资源承载能力的影响。鉴于此,该文提出一种基于节点间资源承载度的链路预测方法。该方法首先通过分析节点间资源传输过程,进而对节点间资源承载能力进行量化,提出资源承载度。然后,基于资源承载度对节点间连接可能性的影响进行分析,并提出相应的链路预测方法。9个真实网络的实验结果表明,相比其他链路预测方法,该方法在3个衡量标准下均具有较高的预测精度。
关键词:复杂网络/
链路预测/
资源承载度/
相似性
Abstract:Link prediction aims to discover the unknown or missing links of complex networks, which plays an important role in practical application. The similarity-based link prediction methods attract a lot of attention due to their briefness and effectiveness. However, most of similarity indices ignore the influence of resource carrying capacity between nodes when calculating the likelihood that a link exists between two endpoints. Because of the problem, a new link prediction method based on resources carrying capacity between nodes is proposed. Firstly, the resource carrying capacity is proposed to quantify the capability of resource carrying between nodes. Then, based on the resource carrying capacity, a new link prediction method is proposed by analyzing the impact of node connectivity. The experimental results of nine real networks show that compared with other link prediction methods, the proposed method can achieve higher prediction accuracy under three standard metrics.
Key words:Complex network/
Link prediction/
Resources carrying capacity/
Similarity



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=40dacfdc-d3a7-465e-a805-ce440989478d
相关话题/网络 资源 社会 博士生 数字