删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

混沌灰狼优化算法训练多层感知器

本站小编 Free考研考试/2022-01-03

晏福,
徐建中,,
李奉书
哈尔滨工程大学经济管理学院 ??哈尔滨 ??150001
基金项目:国家社会科学基金(16BJY078),黑龙江省经济社会发展重点研究课题(KY10900170004),黑龙江省哲学社会科学研究规划(17JYH49)

详细信息
作者简介:晏福:男,1989年生,博士生,研究方向为智能优化算法、神经网络和数据挖掘
徐建中:男,1959年生,教授,博士生导师,研究方向为管理科学前沿研究
李奉书:男,1989年生,博士生,研究方向为管理科学前沿研究
通讯作者:徐建中 xujianzhongxjz@163.com
中图分类号:TP301.6

计量

文章访问数:1209
HTML全文浏览量:446
PDF下载量:76
被引次数:0
出版历程

收稿日期:2018-05-28
修回日期:2018-12-03
网络出版日期:2018-12-14
刊出日期:2019-04-01

Training Multi-layer Perceptrons Using Chaos Grey Wolf Optimizer

Fu YAN,
Jianzhong XU,,
Fengshu LI
School of Economics and Management, Harbin Engineering University, Harbin 150001, China
Funds:The National Social Science Foundation of China (16BJY078), The Key Program of Economic and Social of Heilongjiang Province (KY10900170004), The Philosophy and Social Science Research Planning Program of Heilongjiang Province (17JYH49)


摘要
摘要:灰狼优化算法(GWO)是一种新的基于灰狼捕食行为的元启发式算法,被证明是一种具有高水平的探索和开发能力的算法。但是存在开发和探索不平衡的问题,以至于其优化性能并不理想。该文将混沌理论引入GWO中,用于平衡GWO的探索和开发,提出一种改进的混沌灰狼优化算法(CGWO),并应用于多层感知器(MLPs)的训练。首先,基于Cubic混沌理论对GWO的位置更新公式进行改进,以增加个体的多样性,增大跳出局部最优的概率和对解空间进行深入的搜索;其次,设计一种非线性收敛因子,用于协调和平衡CGWO算法在不同迭代进化时期的探索和开发能力;最后,将CGWO算法作为MLPs的训练器,用于对3个复杂分类问题进行分类实验。结果表明:CGWO在分类准确率,避免陷入局部最优,全局收敛速度和鲁棒性方面相较于其他对比算法均具有较好的性能。
关键词:灰狼优化算法/
混沌理论/
非线性收敛因子/
多层感知器/
分类问题
Abstract:The Grey Wolf Optimizer (GWO) algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature, and it is an algorithm with high level of exploration and exploitation capability. This algorithm has good performance in searching for the global optimum, but it suffers from unbalance between exploitation and exploration. An improved Chaos Grey Wolf Optimizer called CGWO is proposed, for solving complex classification problem. In the proposed algorithm, Cubic chaos theory is used to modify the position equation of GWO, which strengthens the diversity of individuals in the iterative search process. A novel nonlinear convergence factor is designed to replace the linear convergence factor of GWO, so that it can coordinate the balance of exploration and exploitation in the CGWO algorithm. The CGWO algorithm is used as the trainer of the Multi-Layer Perceptrons (MLPs), and 3 complex classification problems are classified. The statistical results prove the CGWO algorithm is able to provide very competitive results in terms of avoiding local minima, solution precision, converging speed and robustness.
Key words:Grey Wolf Optimizer (GWO)/
Chaos theory/
Nonlinear convergence factor/
Multi-Layer Perceptrons (MLPs)/
Classification problem



PDF全文下载地址:

https://jeit.ac.cn/article/exportPdf?id=b963bc24-9bcc-49d9-b873-7ef360f74844
相关话题/优化 管理科学 博士生 哈尔滨工程大学 空间