钱志升,,
王勤民,
余道杰,
程俊平
解放军信息工程大学 ??郑州 ??450001
基金项目:国家自然科学基金(61271104, 61201056)
详细信息
作者简介:周长林:男,1961 年生,教授,研究方向为电磁兼容与多物理场耦合
钱志升:男,1992 年生,硕士,研究方向为电磁泄漏信息侦测与还原
王勤民:男,1975 年生,讲师,研究方向为通信抗干扰技术
余道杰:男,1978 年生,副教授,研究方向为高功率微波技术
程俊平:男,1994 年生,硕士,研究方向为电磁兼容与多物理场耦合
通讯作者:钱志升?qzs0619@163.com
中图分类号:TN971计量
文章访问数:1199
HTML全文浏览量:298
PDF下载量:32
被引次数:0
出版历程
收稿日期:2017-12-04
修回日期:2018-05-09
网络出版日期:2018-07-12
刊出日期:2018-09-01
Recognition and Reconstruction of Conduction Leakage Signal via Power Line Based on PSO-SVM Method
Changlin ZHOU,Zhisheng QIAN,,
Qinmin WANG,
Daojie YU,
Junping CHENG
PLA Information Engineering University, Zhengzhou 450001, China
Funds:The National Natural Science Foundation of China (61271104, 61201056)
摘要
摘要:针对显示器电源线传导泄漏信号中红信号识别的难题,该文提出基于粒子群(PSO)算法优化支持向量机(SVM)的识别方法。首先对传导泄漏信号进行滤波预处理并分段,然后利用粒子群-支持向量机(PSO-SVM)对传导泄漏信号进行训练、分类并与SVM分类性能进行对比,最后应用PSO-SVM实现了显示图像的还原。结果表明此算法可以准确实现电源线传导泄漏信号中红信号的识别,且识别率明显高于SVM分类器。
关键词:传导泄漏/
电源线/
识别/
粒子群-支持向量机/
还原
Abstract:In order to identify the red signal in the conduction leakage signal of the display power line effectively, a Particle Swarm Optimization-Support Vector Mechine (PSO-SVM) algorithm based on Particle Swarm Optimization (PSO) algorithm for parameter optimization is proposed. Firstly, the conducted leakage signal is filtered, then the PSO-SVM is used to train and classify the conducted leakage signals and compared with the SVM classification. Finally, the display image is reconstructed using PSO-SVM. The result shows that the the red signal can be effectively identified, and the identification rate is significantly higher than the SVM classifier.
Key words:Conducted leakage/
Power line/
Recognition/
Particle Swarm Optimization-Support Vector Mechine (PSO-SVM)/
Reconstruction
PDF全文下载地址:
https://jeit.ac.cn/article/exportPdf?id=11777e6b-f2e0-4805-892d-01ff0fa3af6e