刘畅2,,
周滨1, 2
1.中国科学院大学 北京 100049
2.中国科学院空天信息创新研究院 北京 100190
基金项目:国家重点研发计划(2017YFB0503001)
详细信息
作者简介:周雪珂(1996–),女,陕西西安人,中国科学院大学硕士研究生,研究方向为 SAR图像处理、机器学习。
刘畅:刘 畅(1978–),男,山东烟台人,研究员,博士生导师。2006年在中国科学院 电子学研究所获得博士学位,现担任中国科学院空天信息创新研究院研究员、博士生导师。主要研究方向为SAR系统及其相关SAR成像处理。
周滨:周 滨(1994–),男,江西上饶人,中国科学院大学硕士研究生。研究方向为 SAR 图像处理、目标检测。
通讯作者:周雪珂 zhouxk96@163.com
责任主编:刘涛 Corresponding Editor: LIU Tao中图分类号:TN957.52
计量
文章访问数:749
HTML全文浏览量:311
PDF下载量:278
被引次数:0
出版历程
收稿日期:2021-03-04
修回日期:2021-04-05
网络出版日期:2021-04-29
Ship Detection in SAR Images Based on Multiscale Feature Fusion and Channel Relation Calibration of Features
ZHOU Xueke1, 2,,,LIU Chang2,,
ZHOU Bin1, 2
1. University of Chinese Academy of Sciences, Beijing 100049, China
2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
Funds:The State Key Research Development Program of China (2017YFB0503001)
More Information
Corresponding author:ZHOU Xueke, zhouxk96@163.com
摘要
摘要:目前深度学习技术在SAR图像的船舶检测中已取得显著的成果,但针对SAR船舶图像中复杂多变的背景环境,如何准确高效地提取目标特征,提升检测精度与检测速度仍存在着巨大的挑战。针对上述问题,该文提出了一种多尺度特征融合与特征通道关系校准的 SAR 图像船舶检测算法。在Faster R-CNN的基础上,首先通过引入通道注意力机制对特征提取网络进行特征间通道关系校准,提高网络对复杂场景下船舶目标特征提取的表达能力;其次,不同于原始的基于单一尺度特征生成候选区域的方法,该文基于神经架构搜索算法引入改进的特征金字塔结构,高效地将多尺度特征进行充分融合,改善了船舶目标中对小目标、近岸密集目标的漏检问题。最后,在SSDD数据集上进行对比验证。实验结果表明,相较原始的Faster R-CNN,检测精度从85.4%提高到89.4%,检测速率也从2.8 FPS提高到10.7 FPS。该方法能够有效实现高速与高精度的SAR图像船舶检测,具有一定的现实意义。
关键词:合成孔径雷达/
Faster R-CNN/
船舶检测/
特征融合/
通道注意力
Abstract:Deep-learning technology has enabled remarkable results for ship detection in SAR images. However, in view of the complex and changeable backgrounds of SAR ship images, how to accurately and efficiently extract target features and improve detection accuracy and speed is still a huge challenge. To solve this problem, a ship detection algorithm based on multiscale feature fusion and channel relation calibration of features is proposed in this paper. First, based on Faster R-CNN, a channel attention mechanism is introduced to calibrate the channel relationship between features in the feature extraction network, so as to improve the network’s expression ability for extraction of ship features in different scenes. Second, unlike the original method of generating candidate regions based on single-scale features, this paper introduces an improved feature pyramid structure based on a neural architecture search algorithm, which helps improve the performance of the network. The multiscale features are effectively fused to settle the problem of missing detections of small targets and adjacent inshore targets. Experimental results on the SSDD dataset show that, compared with the original Faster R-CNN, the proposed algorithm improves detection accuracy from 85.4% to 89.4% and the detection rate from 2.8 FPS to 10.7 FPS. Thus, this method effectively achieves high-speed and high-accuracy SAR ship detection, which has practical benefits.
Key words:SAR/
Faster R-CNN/
Ship detection/
Features fusion/
Channel attention
PDF全文下载地址:
https://plugin.sowise.cn/viewpdf/198_d5c567d6-761f-496a-af02-129b339fa109_R21021