符士磊,
徐丰,
复旦大学电磁波信息科学教育部重点实验室 上海 200433
基金项目:国家重点研发计划(2017YFA0700203)
详细信息
作者简介:李商洋(1993–),男,安徽人,复旦大学电磁波信息科学教育部重点实验室博士研究生,研究方向为天线理论和设计、可编程超表面、深度学习在电磁领域的应用
符士磊(1995–),男,江苏人,复旦大学电磁波信息科学教育部重点实验室博士研究生,研究方向为SAR图像解译、深度学习
徐丰:徐 丰(1982–),男,浙江人,复旦大学信息科学与工程学院教授,电磁波信息科学教育部重点实验室副主任,研究方向为电磁散射建模、SAR图像解译
通讯作者:徐丰 fengxu@fudan.edu.cn
责任主编:张安学 Corresponding Editor: ZHANG Anxue中图分类号:TN95
计量
文章访问数:547
HTML全文浏览量:267
PDF下载量:234
被引次数:0
出版历程
收稿日期:2021-03-26
修回日期:2021-04-26
网络出版日期:2021-04-30
DNN-based Intelligent Beamforming on a Programmable Metasurface
LI Shangyang,FU Shilei,
XU Feng,
Key Laboratory for Information Science of Electromagnetic Waves, MoE, Fudan University, Shanghai 200433, China
Funds:The National Key Research and Development Program of China (2017YFA0700203)
More Information
Corresponding author:XU Feng, fengxu@fudan.edu.cn
摘要
摘要:通过在超表面单元上加载二极管等有源器件,可编程超表面可实现对电磁波的实时灵活调控。通常利用全波仿真软件计算可编程超表面的辐射场,但该方法需要消耗大量的时间,因而降低了设计效率。为了实现准确高效求解给定编码序列计算辐射场,该文首先设计了辐射场自动测试系统,利用该测试系统实测了少量的编码和辐射场数据,其后提出了一个正向深度神经网络,基于实测的数据训练该神经网络,最终实现了给定编码准确高效预测辐射场。对于给定辐射场求解编码的逆问题,该文提出了一个逆向深度神经网络。基于正向网络生成的数据训练所提出的逆向网络,最终实现了给定辐射场实时准确求解编码。该文所提出的方法为雷达波束形成提供了一种新可选方案,在雷达智能波束形成、微波成像等领域有一定的应用价值。
关键词:可编程超表面/
离散偶极子近似/
深度学习/
全连接网络/
辐射场预测
Abstract:The Programmable Metasurface (PM) can flexibly manipulate electromagnetic waves in real time using loading active devices on the meta-element. Calculating the radiation fields of the PM with complex structures using full-wave simulation software is time-consuming, which results in design efficiency. To accurately and efficiently solve the mapping relationship from coding schemes to radiation fields, an Auto-Measuring System (AMS) of radiation patterns is designed. A few Code-to-Pattern (C-P) data are measured via the AMS. Then, a forward Deep Neural Network (DNN) is proposed, the DNN is trained by the measured data, and an accurate and efficient prediction of C-P is realized. More C-P data are generated based on the proposed forward neural network, and the data are used to train another proposed inverse DNN and realize the accurate prediction of codes when given patterns in real time. This method provides a new alternative scheme for radar beamforming and has application values in intelligent radar beamforming and microwave imaging.
Key words:Programmable metasurface/
Deep neural network/
Full connected network/
Code-to-pattern/
Pattern-to-code
PDF全文下载地址:
https://plugin.sowise.cn/viewpdf/198_a3495f86-bc11-4c1f-b1e7-0d592438e5e8_R21039