张子敬1,,
刘军2,,,
赵永波1,
①.西安电子科技大学雷达信号处理国家重点实验室 ??西安 ??710071
②.中国科学技术大学信息科学技术学院 ??合肥 ??230027
基金项目:国家自然科学基金(61871469, 61571349),陕西省自然科学基金(2018JM6051)
详细信息
作者简介:韩金旺(1993–),男,河北石家庄人,西安电子科技大学硕士生,研究方向为MIMO雷达信号处理。E-mail: jwhan0828@163.com
张子敬(1967–),男,西安电子科技大学教授,博士生导师,IEEE会员。研究方向为雷达目标检测、雷达极化信息处理、多速率滤波器组设计等。E-mail: zjzhang@xidian.edu.cn
刘军:刘 军(1983–),男,现为中国科学技术大学信息技术学院副教授,中国电子学会高级会员。研究方向为雷达信号处理和机器学习。E-mail: junliu@ustc.edu.cn
赵永波(1972–),男,现为西安电子科技大学教授,中国电子学会高级会员。研究方向为新体制雷达系统和MIMO雷达。E-mail: ybzhao@xidian.edu.cn
通讯作者:刘军 ?junliu@ustc.edu.cn
中图分类号:TN957.51计量
文章访问数:1695
HTML全文浏览量:493
PDF下载量:166
被引次数:0
出版历程
收稿日期:2018-10-25
修回日期:2019-01-03
Adaptive Bayesian Detection for MIMO Radar in Gaussian Clutter
HAN Jinwang1,,ZHANG Zijing1,,
LIU Jun2,,,
ZHAO Yongbo1,
①. National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
②. Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
Funds:The National Natural Science Foundation of China (61871469, 61571349), The Natural Science Foundation of Shaanxi Province (2018JM6051)
More Information
Corresponding author:LIU Jun,?junliu@ustc.edu.cn
摘要
摘要:对于集中式多输入多输出(Multiple-Input Multiple-Output, MIMO)雷达,该文研究了高斯杂波背景下的目标检测问题。该文假设杂波的协方差矩阵是未知随机的,且服从逆复Wishart分布,基于贝叶斯方法和广义似然比检验准则设计了两种新型自适应检测器。该文提出的贝叶斯检测器具有两个显著的优点:(1)不需要训练数据;(2)杂波的先验知识体现在设计方案中,从而提高了检测性能。仿真结果显示该文提出的贝叶斯检测器的检测性能优于目前常用的非贝叶斯检测器,特别是在发射波形采样数较少时。另外,该贝叶斯检测器在参数失配条件下的性能会有一定程度下降。
关键词:多输入多输出雷达/
自适应检测/
贝叶斯/
逆复Wishart分布/
广义似然比检验
Abstract:For collocated Multiple-Input Multiple-Output (MIMO) radar, we investigate the target detection problem in Gaussian clutter with an unknown but random covariance matrix. An inverse complex Wishart distribution is chosen as prior knowledge for the random covariance matrix. We propose two detectors in the Bayesian framework based on the criteria of the Generalized Likelihood Ratio Test. The two main advantages of the proposed Bayesian detectors are as follows: (1) no training data are required; and (2) a prior knowledge about the clutter is incorporated in the decision rules to achieve detection performance gains. Numerical simulations show that the proposed Bayesian detectors outperform the current commonly used non-Bayesian counterparts, particularly when the sample number of the transmitted waveform is small. In addition, the performance of the proposed detector will decline in parameter mismatched situation.
Key words:Multiple-Input Multiple-Output (MIMO) radar/
Adaptive detection/
Bayesian/
Inverse complex Wishart distribution/
Generalized Likelihood Ratio Test (GLRT)
PDF全文下载地址:
https://plugin.sowise.cn/viewpdf/198_b01f5201-bc30-4c2c-910a-9b6c0d5ea9ce_R18090