株高和地上生物量AGB(Above-Ground Biomass)是作物长势监测的重要指标,因此快速获取这些信息对指导田间管理具有重要意义。本研究通过无人机搭载高清数码相机分别获取马铃薯5个生育期的影像数据,地面实测株高H(heigh)和AGB以及地面控制点GCPs(Ground Control Points)的三维空间坐标。首先,利用试验区域的影像数据结合GCPs的位置信息从生成的数字表面模型DSM(Digital Surface Model)中提取出马铃薯的株高(Hdsm)。其次,选取26种植被指数和H
、Hdsm组成新的数据集与AGB作相关性分析,筛选出相关性较高的前7个植被指数同Hdsm作为估算马铃薯AGB的输入参数。然后,使用MLR(Multiple Linear Regression)、SVM(Support Vector Machine)和ANN(Artificial Neural Network)方法分别基于植被指数、植被指数和Hdsm构建马铃薯多生育期AGB估算模型,对不同估算模型进行比较分析,从而选择出AGB估算的最佳模型。结果表明:基于DSM提取的Hdsm与实测株高H高度拟合(
R2=0.86,RMSE=6.36 cm,NRMSE=13.42%);各生育期基于3种回归技术均以植被指数融入Hdsm构建的模型精度最高,估算能力最强;各生育期利用MLR方法构建的AGB估算模型效果最佳,其次为SVM-AGB估算模型,而ANN-AGB估算模型效果最差。该研究可为马铃薯AGB快速、无损监测提供科学参考。
PDF全文下载地址:
http://www.ygxb.ac.cn/rc-pub/front/front-article/download?id=18913843